Nuprl Lemma : inhabited-upper-rc-face
∀k:ℕ. ∀c:ℚCube(k). ∀j:ℕk.  ((↑Inhabited(c j)) ⇒ Inhabited(upper-rc-face(c;j)) = Inhabited(c))
Proof
Definitions occuring in Statement : 
upper-rc-face: upper-rc-face(c;j), 
inhabited-rat-cube: Inhabited(c), 
rational-cube: ℚCube(k), 
inhabited-rat-interval: Inhabited(I), 
int_seg: {i..j-}, 
nat: ℕ, 
assert: ↑b, 
bool: 𝔹, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
true: True, 
nequal: a ≠ b ∈ T , 
guard: {T}, 
sq_type: SQType(T), 
or: P ∨ Q, 
decidable: Dec(P), 
nat: ℕ, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
less_than: a < b, 
le: A ≤ B, 
lelt: i ≤ j < k, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
rational-interval: ℚInterval, 
rational-cube: ℚCube(k), 
int_seg: {i..j-}, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
upper-rc-face: upper-rc-face(c;j), 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
neg_assert_of_eq_int, 
assert-bnot, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_tt, 
inhabited-rat-point-interval, 
assert_of_eq_int, 
eqtt_to_assert, 
iff_weakening_equal, 
bfalse_wf, 
eq_int_eq_false, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
bool_subtype_base, 
bool_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
assert-inhabited-rat-cube, 
subtype_rel_self, 
int_seg_wf, 
assert_wf, 
iff_weakening_uiff, 
rat-point-interval_wf, 
rational-interval_wf, 
eq_int_wf, 
ifthenelse_wf, 
inhabited-rat-interval_wf, 
istype-assert, 
upper-rc-face_wf, 
inhabited-rat-cube_wf, 
iff_imp_equal_bool
Rules used in proof : 
voidElimination, 
dependent_pairFormation_alt, 
equalityElimination, 
baseClosed, 
imageMemberEquality, 
universeEquality, 
lambdaEquality_alt, 
intEquality, 
cumulativity, 
instantiate, 
unionElimination, 
natural_numberEquality, 
universeIsType, 
promote_hyp, 
imageElimination, 
functionEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
productElimination, 
inhabitedIsType, 
applyEquality, 
rename, 
setElimination, 
functionIsType, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).  \mforall{}j:\mBbbN{}k.    ((\muparrow{}Inhabited(c  j))  {}\mRightarrow{}  Inhabited(upper-rc-face(c;j))  =  Inhabited(c))
Date html generated:
2019_10_29-AM-07_56_52
Last ObjectModification:
2019_10_17-PM-05_14_21
Theory : rationals
Home
Index