Nuprl Lemma : q-not-limit-zero-diverges-2
∀f:ℕ+ ⟶ ℚ
(∃q:ℚ. (0 < q ∧ (∀n:ℕ. ∃m:ℕ. (n < m ∧ (q ≤ f[m])))))
⇒ (∀B:ℚ. ∃n:ℕ. (B ≤ Σ1 ≤ i < n. f[i]))
supposing ∀n:ℕ+. (0 ≤ f[n])
Proof
Definitions occuring in Statement :
qsum: Σa ≤ j < b. E[j]
,
qle: r ≤ s
,
qless: r < s
,
rationals: ℚ
,
nat_plus: ℕ+
,
nat: ℕ
,
less_than: a < b
,
uimplies: b supposing a
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
function: x:A ⟶ B[x]
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
not: ¬A
,
ge: i ≥ j
,
int_upper: {i...}
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
top: Top
,
true: True
,
qle: r ≤ s
,
grp_leq: a ≤ b
,
infix_ap: x f y
,
grp_le: ≤b
,
pi1: fst(t)
,
pi2: snd(t)
,
qadd_grp: <ℚ+>
,
q_le: q_le(r;s)
,
callbyvalueall: callbyvalueall,
evalall: evalall(t)
,
bor: p ∨bq
,
qpositive: qpositive(r)
,
qsub: r - s
,
qadd: r + s
,
qmul: r * s
,
lt_int: i <z j
,
qeq: qeq(r;s)
,
eq_int: (i =z j)
,
nequal: a ≠ b ∈ T
,
subtract: n - m
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
squash: ↓T
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
sq_stable: SqStable(P)
,
qsum: Σa ≤ j < b. E[j]
,
rng_sum: rng_sum,
mon_itop: Π lb ≤ i < ub. E[i]
,
add_grp_of_rng: r↓+gp
,
grp_op: *
,
grp_id: e
,
qrng: <ℚ+*>
,
rng_plus: +r
,
rng_zero: 0
,
itop: Π(op,id) lb ≤ i < ub. E[i]
,
ycomb: Y
Lemmas referenced :
qle_witness,
int-subtype-rationals,
nat_plus_wf,
q-not-limit-zero-diverges,
eq_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
int_upper_subtype_nat,
false_wf,
le_wf,
nat_properties,
nequal-le-implies,
zero-add,
decidable__lt,
not-lt-2,
add_functionality_wrt_le,
add-commutes,
le-add-cancel,
less_than_wf,
nat_wf,
rationals_wf,
exists_wf,
qless_wf,
all_wf,
qle_wf,
less_than_transitivity2,
not-equal-2,
add-associates,
add-zero,
condition-implies-le,
minus-add,
minus-zero,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
intformeq_wf,
itermConstant_wf,
int_formula_prop_eq_lemma,
int_term_value_constant_lemma,
squash_wf,
true_wf,
qsum_wf,
int_seg_wf,
decidable__equal_int,
int_subtype_base,
sq_stable__le,
less-iff-le,
int_seg_properties,
less_than_transitivity1,
less_than_irreflexivity,
sum_unroll_base_q,
iff_weakening_equal,
sum_unroll_lo_q,
mon_ident_q
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation,
isect_memberFormation,
cut,
introduction,
sqequalRule,
sqequalHypSubstitution,
lambdaEquality,
dependent_functionElimination,
thin,
hypothesisEquality,
extract_by_obid,
isectElimination,
natural_numberEquality,
hypothesis,
applyEquality,
functionExtensionality,
independent_functionElimination,
rename,
setElimination,
because_Cache,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
dependent_pairFormation,
promote_hyp,
instantiate,
cumulativity,
voidElimination,
hypothesis_subsumption,
dependent_set_memberEquality,
independent_pairFormation,
isect_memberEquality,
voidEquality,
intEquality,
productEquality,
functionEquality,
addEquality,
minusEquality,
int_eqEquality,
computeAll,
hyp_replacement,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbQ{}
(\mexists{}q:\mBbbQ{}. (0 < q \mwedge{} (\mforall{}n:\mBbbN{}. \mexists{}m:\mBbbN{}. (n < m \mwedge{} (q \mleq{} f[m]))))) {}\mRightarrow{} (\mforall{}B:\mBbbQ{}. \mexists{}n:\mBbbN{}. (B \mleq{} \mSigma{}1 \mleq{} i < n. f[i]))
supposing \mforall{}n:\mBbbN{}\msupplus{}. (0 \mleq{} f[n])
Date html generated:
2018_05_22-AM-00_16_43
Last ObjectModification:
2017_07_26-PM-06_52_59
Theory : rationals
Home
Index