Nuprl Lemma : qexp-nonneg
∀[n:ℕ]. ∀[r:ℚ].  0 ≤ r ↑ n supposing 0 ≤ r
Proof
Definitions occuring in Statement : 
qexp: r ↑ n, 
qle: r ≤ s, 
rationals: ℚ, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
all: ∀x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
le: A ≤ B, 
less_than': less_than'(a;b), 
decidable: Dec(P), 
or: P ∨ Q, 
nat_plus: ℕ+, 
rev_uimplies: rev_uimplies(P;Q), 
qge: a ≥ b, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j)
Lemmas referenced : 
qmul_zero_qrng, 
qmul_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
qle_functionality_wrt_implies, 
qle_reflexivity, 
qmul_wf, 
nat_wf, 
int-subtype-rationals, 
exp_unroll_q, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
le_wf, 
false_wf, 
iff_weakening_equal, 
exp_zero_q, 
true_wf, 
squash_wf, 
rationals_wf, 
qle_wf, 
qexp_wf, 
qle_witness, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
applyEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
dependent_set_memberEquality, 
unionElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[r:\mBbbQ{}].    0  \mleq{}  r  \muparrow{}  n  supposing  0  \mleq{}  r
Date html generated:
2016_05_15-PM-11_09_20
Last ObjectModification:
2016_01_16-PM-09_26_56
Theory : rationals
Home
Index