Nuprl Lemma : exp_zero_q
∀[e:ℚ]. (e ↑ 0 = 1 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n, 
rationals: ℚ, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
qexp: r ↑ n, 
has-value: (a)↓, 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
nat_plus: ℕ+, 
top: Top, 
mk-rational: mk-rational(a;b), 
rationals: ℚ, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
btrue: tt, 
eq_int: (i =z j), 
assert: ↑b
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
qrep_wf, 
nat_plus_wf, 
equal_wf, 
rationals_wf, 
false_wf, 
le_wf, 
exp0_lemma, 
exp-fastexp, 
quotient-member-eq, 
b-union_wf, 
int_nzero_wf, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
qeq-equiv, 
bfalse_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
ifthenelse_wf, 
subtype_rel_b-union-left, 
iff_imp_equal_bool, 
qeq_wf2, 
mk-rational_wf, 
int-subtype-rationals, 
btrue_wf, 
assert-qeq, 
assert_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
sqequalRule, 
callbyvalueReduce, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
productEquality, 
lambdaFormation, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
baseClosed, 
imageMemberEquality, 
dependent_pairEquality, 
independent_pairEquality, 
because_Cache, 
addLevel, 
instantiate, 
cumulativity, 
universeEquality, 
applyEquality, 
impliesFunctionality
Latex:
\mforall{}[e:\mBbbQ{}].  (e  \muparrow{}  0  =  1)
Date html generated:
2018_05_21-PM-11_59_11
Last ObjectModification:
2017_07_26-PM-06_48_32
Theory : rationals
Home
Index