Nuprl Lemma : qrep_wf
∀[r:ℚ]. (qrep(r) ∈ ℤ × ℕ+)
Proof
Definitions occuring in Statement : 
qrep: qrep(r), 
rationals: ℚ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
product: x:A × B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
rationals: ℚ, 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
b-union: A ⋃ B, 
tunion: ⋃x:A.B[x], 
bool: 𝔹, 
unit: Unit, 
ifthenelse: if b then t else f fi , 
pi2: snd(t), 
qrep: qrep(r), 
qeq: qeq(r;s), 
uimplies: b supposing a, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓, 
has-valueall: has-valueall(a), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
int_nzero: ℤ-o, 
bfalse: ff, 
btrue: tt, 
iff: P ⇐⇒ Q, 
false: False, 
prop: ℙ, 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
nat_plus: ℕ+, 
nat: ℕ, 
spreadn: spread3, 
ge: i ≥ j , 
coprime: CoPrime(a,b), 
guard: {T}, 
sq_type: SQType(T), 
nequal: a ≠ b ∈ T , 
cand: A c∧ B, 
gcd_p: GCD(a;b;y), 
it: ⋅, 
uiff: uiff(P;Q), 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
rev_implies: P ⇐ Q, 
gt: i > j, 
pi1: fst(t), 
true: True, 
assert: ↑b, 
bnot: ¬bb
Lemmas referenced : 
nat_plus_wf, 
bool_wf, 
qeq_wf, 
btrue_wf, 
b-union_wf, 
int_nzero_wf, 
rationals_wf, 
valueall-type-has-valueall, 
int-valueall-type, 
evalall-reduce, 
assert_wf, 
eq_int_wf, 
equal-wf-base, 
int_subtype_base, 
istype-assert, 
product-valueall-type, 
set-valueall-type, 
nequal_wf, 
set_subtype_base, 
iff_weakening_uiff, 
assert_of_eq_int, 
eqtt_to_assert, 
istype-less_than, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__lt, 
coprime_wf, 
le_wf, 
gcd_reduce_wf, 
gcd_reduce_property, 
decidable__equal_int, 
nat_properties, 
int_nzero_properties, 
mul_cancel_in_eq, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
itermMultiply_wf, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
subtype_base_sq, 
divides_wf, 
one_divs_any, 
bnot_wf, 
less_than_wf, 
lt_int_wf, 
le_int_wf, 
uiff_transitivity, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
int_formula_prop_le_lemma, 
intformle_wf, 
coprime-equiv-unique-pair, 
int_formula_prop_or_lemma, 
int_formual_prop_imp_lemma, 
intformor_wf, 
intformimplies_wf, 
neg_mul_arg_bounds, 
pi1_wf_top, 
pi2_wf, 
minus-minus, 
divides_invar_2, 
int_term_value_minus_lemma, 
itermMinus_wf, 
pos_mul_arg_bounds, 
istype-universe, 
true_wf, 
squash_wf, 
equal_wf, 
mul_nzero, 
mul-associates, 
mul-swap, 
mul-commutes, 
subtype_rel_self, 
iff_weakening_equal, 
istype-le, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
ifthenelse_wf, 
gt_wf, 
product_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
productEquality, 
intEquality, 
thin, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
lambdaFormation_alt, 
imageElimination, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
equalityIstype, 
universeIsType, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
productIsType, 
because_Cache, 
sqequalBase, 
axiomEquality, 
independent_isectElimination, 
callbyvalueReduce, 
applyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_pairEquality, 
multiplyEquality, 
setElimination, 
rename, 
isintReduceTrue, 
voidElimination, 
isect_memberEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
independent_pairFormation, 
int_eqEquality, 
cumulativity, 
instantiate, 
minusEquality, 
imageMemberEquality, 
Error :memTop, 
universeEquality, 
hyp_replacement, 
functionIsType, 
inlFormation_alt, 
inrFormation_alt
Latex:
\mforall{}[r:\mBbbQ{}].  (qrep(r)  \mmember{}  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
Date html generated:
2020_05_20-AM-09_13_13
Last ObjectModification:
2019_12_31-PM-04_58_21
Theory : rationals
Home
Index