Nuprl Lemma : qexp-qminus
∀n:ℕ. ∀a:ℚ.  (-(a) ↑ n = if isEven(n) then a ↑ n else -(a ↑ n) fi  ∈ ℚ)
Proof
Definitions occuring in Statement : 
qexp: r ↑ n, 
qmul: r * s, 
rationals: ℚ, 
isEven: isEven(n), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
all: ∀x:A. B[x], 
minus: -n, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isEven: isEven(n), 
eq_int: (i =z j), 
modulus: a mod n, 
btrue: tt, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nat_plus: ℕ+, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
rationals_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
qmul_wf, 
isEven_wf, 
equal_wf, 
ite_rw_true, 
iff_weakening_equal, 
bool_wf, 
eqtt_to_assert, 
qexp_wf, 
le_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
int-subtype-rationals, 
even-implies, 
qmul_assoc, 
qmul_ac_1_qrng, 
qinv_inv_q, 
odd-or-even, 
assert_of_bor, 
isOdd_wf, 
odd-implies, 
exp_zero_q, 
ifthenelse_wf, 
squash_wf, 
true_wf, 
exp_unroll_q, 
qmul_over_minus_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
because_Cache, 
minusEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
dependent_set_memberEquality, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
universeEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a:\mBbbQ{}.    (-(a)  \muparrow{}  n  =  if  isEven(n)  then  a  \muparrow{}  n  else  -(a  \muparrow{}  n)  fi  )
Date html generated:
2018_05_22-AM-00_01_39
Last ObjectModification:
2017_07_26-PM-06_50_18
Theory : rationals
Home
Index