Nuprl Lemma : qless-witness
∀[a,b:ℚ].  ⋅ ∈ a < b supposing a < b
Proof
Definitions occuring in Statement : 
qless: r < s, 
rationals: ℚ, 
it: ⋅, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
decidable__qless, 
bfalse: ff, 
rev_implies: P ⇐ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
and: P ∧ Q, 
uiff: uiff(P;Q), 
guard: {T}, 
implies: P ⇒ Q, 
sq_type: SQType(T), 
btrue: tt, 
decidable: Dec(P), 
or: P ∨ Q, 
assert: ↑b, 
isl: isl(x), 
true: True, 
outl: outl(x), 
false: False, 
bnot: ¬bb, 
outr: outr(x)
Lemmas referenced : 
rationals_wf, 
qless_wf, 
decidable__qless, 
subtype_rel_self, 
all_wf, 
decidable_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert-qpositive, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
qpositive_wf, 
qsub_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
int-subtype-rationals, 
isl_wf
Rules used in proof : 
inhabitedIsType, 
because_Cache, 
isect_memberEquality_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
extract_by_obid, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
sqequalRule, 
hypothesis, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
instantiate, 
functionEquality, 
lambdaEquality, 
impliesFunctionality, 
lambdaFormation, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
independent_isectElimination, 
cumulativity, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
voidElimination
Latex:
\mforall{}[a,b:\mBbbQ{}].    \mcdot{}  \mmember{}  a  <  b  supposing  a  <  b
Date html generated:
2020_05_20-AM-09_15_52
Last ObjectModification:
2020_01_22-PM-05_16_17
Theory : rationals
Home
Index