Nuprl Lemma : qsum-reciprocal-squares
∀[J:ℕ+]. (Σ1 ≤ n < J + 1. (1/n * n) ≤ (2 - (1/J)))
Proof
Definitions occuring in Statement : 
qsum: Σa ≤ j < b. E[j], 
qle: r ≤ s, 
qsub: r - s, 
qdiv: (r/s), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
multiply: n * m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat_plus: ℕ+, 
implies: P ⇒ Q, 
squash: ↓T, 
uimplies: b supposing a, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
subtype_rel: A ⊆r B, 
nequal: a ≠ b ∈ T , 
guard: {T}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
so_apply: x[s], 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
eq_int: (i =z j), 
bfalse: ff, 
assert: ↑b, 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
qdiv: (r/s), 
qinv: 1/r, 
qle: r ≤ s, 
grp_leq: a ≤ b, 
infix_ap: x f y, 
grp_le: ≤b, 
pi1: fst(t), 
pi2: snd(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
qsum: Σa ≤ j < b. E[j], 
rng_sum: rng_sum, 
mon_itop: Π lb ≤ i < ub. E[i], 
itop: Π(op,id) lb ≤ i < ub. E[i], 
ycomb: Y, 
lt_int: i <z j, 
subtract: n - m, 
grp_id: e, 
add_grp_of_rng: r↓+gp, 
rng_zero: 0, 
qrng: <ℚ+*>, 
bor: p ∨bq, 
qpositive: qpositive(r), 
band: p ∧b q, 
rev_uimplies: rev_uimplies(P;Q), 
qge: a ≥ b
Lemmas referenced : 
nat_plus_properties, 
qle_wf, 
sum_unroll_hi_q, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
qdiv_wf, 
int_entire_a, 
int_seg_properties, 
intformeq_wf, 
intformle_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_le_lemma, 
equal-wf-base, 
int_subtype_base, 
int-equal-in-rationals, 
equal-wf-T-base, 
rationals_wf, 
int-subtype-rationals, 
not_wf, 
int_seg_wf, 
qsub_wf, 
iff_weakening_equal, 
add-subtract-cancel, 
qsum_wf, 
nat_plus_wf, 
primrec-wf-nat-plus, 
subtype_rel_set, 
less_than_wf, 
qle_witness, 
assert-qeq, 
qadd_wf, 
squash_wf, 
true_wf, 
qle_functionality_wrt_implies, 
qadd_functionality_wrt_qle, 
qle_weakening_eq_qorder, 
qmul_preserves_qle, 
qless-int, 
qmul_wf, 
qadd-add, 
qmul-mul, 
qle-int, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul_comm_qrng, 
mon_assoc_q, 
qadd_comm_q, 
qmul-qdiv-cancel5, 
qmul-qdiv-cancel, 
qadd_ac_1_q, 
qmul_ac_1_qrng, 
qmul_one_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
addEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
multiplyEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
addLevel, 
impliesFunctionality, 
baseApply, 
closedConclusion, 
imageMemberEquality, 
independent_functionElimination, 
minusEquality, 
universeEquality
Latex:
\mforall{}[J:\mBbbN{}\msupplus{}].  (\mSigma{}1  \mleq{}  n  <  J  +  1.  (1/n  *  n)  \mleq{}  (2  -  (1/J)))
Date html generated:
2018_05_22-AM-00_02_53
Last ObjectModification:
2017_07_26-PM-06_51_08
Theory : rationals
Home
Index