Nuprl Lemma : test23
∀[a,b,c:ℚ].  (False) supposing (0 < c and ((b + c) ≤ a) and ((a + c) ≤ b))
Proof
Definitions occuring in Statement : 
qle: r ≤ s, 
qless: r < s, 
qadd: r + s, 
rationals: ℚ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
false: False, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
false: False, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
not: ¬A, 
implies: P ⇒ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_exists: ∃x:A [B[x]], 
isl: isl(x), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
assert: ↑b, 
btrue: tt, 
true: True, 
q-constraints: q-constraints(k;A;y), 
all: ∀x:A. B[x], 
top: Top, 
cand: A c∧ B, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
sq_type: SQType(T), 
guard: {T}, 
select: L[n], 
cons: [a / b], 
pi2: snd(t), 
pi1: fst(t), 
q-rel: q-rel(r;x), 
eq_int: (i =z j), 
squash: ↓T, 
nat_plus: ℕ+, 
less_than: a < b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
select?: as[i]?a, 
lt_int: i <z j, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
qless_wf, 
int-subtype-rationals, 
qle_wf, 
qadd_wf, 
rationals_wf, 
decidable__q-constraints-opt, 
false_wf, 
le_wf, 
cons_wf, 
nat_wf, 
select?_wf, 
nil_wf, 
outr_wf, 
sq_exists_wf, 
list_wf, 
q-constraints_wf, 
not_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
squash_wf, 
true_wf, 
q-linear-unroll, 
less_than_wf, 
subtype_rel_self, 
iff_weakening_equal, 
qmul_wf, 
q-linear-base, 
int_seg_subtype, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
qadd_preserves_qle, 
qadd_preserves_qless, 
mon_ident_q, 
qmul_one_qrng, 
mon_assoc_q, 
qadd_ac_1_q, 
qadd_comm_q, 
qinverse_q, 
qadd_inv_assoc_q, 
qmul_zero_qrng
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
because_Cache, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
applyEquality, 
hypothesisEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
instantiate, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
productEquality, 
functionEquality, 
intEquality, 
independent_pairEquality, 
lambdaEquality, 
minusEquality, 
computeAll, 
independent_isectElimination, 
independent_functionElimination, 
dependent_set_memberFormation, 
dependent_functionElimination, 
voidEquality, 
setElimination, 
rename, 
unionElimination, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
hypothesis_subsumption, 
addEquality, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality
Latex:
\mforall{}[a,b,c:\mBbbQ{}].    (False)  supposing  (0  <  c  and  ((b  +  c)  \mleq{}  a)  and  ((a  +  c)  \mleq{}  b))
Date html generated:
2018_05_22-AM-00_26_37
Last ObjectModification:
2018_05_19-PM-04_08_33
Theory : rationals
Home
Index