Nuprl Lemma : cbva_seq-sqequal-n

L:Top. ∀F1,F2:Base. ∀m,n:ℕ.  ((F1 ~n F2)  (cbva_seq(L; F1; m) ~n cbva_seq(L; F2; m)))


Proof




Definitions occuring in Statement :  cbva_seq: cbva_seq(L; F; m) nat: top: Top all: x:A. B[x] implies:  Q add: m natural_number: $n base: Base sqequal_n: ~n t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q cbva_seq: cbva_seq(L; F; m) exists: x:A. B[x] true: True prop: mk_applies: mk_applies(F;G;m) top: Top le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A uall: [x:A]. B[x] guard: {T} ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) sq_type: SQType(T) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b callbyvalueall: callbyvalueall subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__lt true_wf primrec0_lemma false_wf le_wf nat_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma equal_wf subtype_base_sq int_subtype_base le_int_wf bool_wf eqtt_to_assert assert_of_le_int add-subtract-cancel intformless_wf int_formula_prop_less_lemma eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot base_wf set_subtype_base all_wf sqequal_n_wf set_wf less_than_wf primrec-wf2 top_wf mk_applies_roll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequal_n rule thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination natural_numberEquality addEquality setElimination rename hypothesisEquality hypothesis unionElimination promote_hyp dependent_pairFormation baseClosed productElimination sqequalRule isect_memberEquality voidElimination voidEquality dependent_set_memberEquality independent_pairFormation isectElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_isectElimination lambdaEquality int_eqEquality intEquality computeAll because_Cache instantiate cumulativity independent_functionElimination equalityElimination sqequalnReflexivity baseApply closedConclusion applyEquality sqequalZero

Latex:
\mforall{}L:Top.  \mforall{}F1,F2:Base.  \mforall{}m,n:\mBbbN{}.    ((F1  \msim{}n  +  1  F2)  {}\mRightarrow{}  (cbva\_seq(L;  F1;  m)  \msim{}n  cbva\_seq(L;  F2;  m)))



Date html generated: 2017_10_01-AM-08_42_52
Last ObjectModification: 2017_07_26-PM-04_29_23

Theory : untyped!computation


Home Index