Nuprl Lemma : funtype-unroll-last-eq

[T:Type]. ∀[n:ℕ]. ∀[A:ℕn ⟶ Type].
  (funtype(n;A;T) if (n =z 0) then else funtype(n 1;A;(A (n 1)) ⟶ T) fi  ∈ Type)


Proof




Definitions occuring in Statement :  funtype: funtype(n;A;T) int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  funtype-unroll-last eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add funtype_wf int_seg_wf subtract_wf int_upper_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf subtype_rel_dep_function int_seg_subtype subtype_rel_self nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis because_Cache lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination natural_numberEquality hypothesis_subsumption dependent_set_memberEquality independent_pairFormation setElimination rename functionEquality applyEquality functionExtensionality lambdaEquality int_eqEquality intEquality computeAll universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].
    (funtype(n;A;T)  =  if  (n  =\msubz{}  0)  then  T  else  funtype(n  -  1;A;(A  (n  -  1))  {}\mrightarrow{}  T)  fi  )



Date html generated: 2017_10_01-AM-08_39_43
Last ObjectModification: 2017_07_26-PM-04_27_41

Theory : untyped!computation


Home Index