Nuprl Lemma : mk_applies_ite
∀[G,b,x,y:Top]. ∀[m:ℕ].
  (mk_applies(if b then x else y fi G;m) ~ if b then mk_applies(x;G;m) else mk_applies(y;G;m) fi )
Proof
Definitions occuring in Statement : 
mk_applies: mk_applies(F;G;m)
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
mk_applies: mk_applies(F;G;m)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
strict4: strict4(F)
, 
has-value: (a)↓
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
top_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lifting-strict-decide, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
primrec-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
unionElimination, 
because_Cache, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
baseClosed, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation
Latex:
\mforall{}[G,b,x,y:Top].  \mforall{}[m:\mBbbN{}].
    (mk\_applies(if  b  then  x  else  y  fi  ;G;m)  \msim{}  if  b  then  mk\_applies(x;G;m)  else  mk\_applies(y;G;m)  fi  )
Date html generated:
2017_10_01-AM-08_41_02
Last ObjectModification:
2017_07_26-PM-04_28_21
Theory : untyped!computation
Home
Index