Nuprl Lemma : mk_applies_ite

[G,b,x,y:Top]. ∀[m:ℕ].
  (mk_applies(if then else fi ;G;m) if then mk_applies(x;G;m) else mk_applies(y;G;m) fi )


Proof




Definitions occuring in Statement :  mk_applies: mk_applies(F;G;m) nat: ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: mk_applies: mk_applies(F;G;m) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] strict4: strict4(F) has-value: (a)↓ squash: T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf top_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lifting-strict-decide has-value_wf_base base_wf is-exception_wf primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination because_Cache equalityElimination equalityTransitivity equalitySymmetry productElimination promote_hyp instantiate cumulativity baseClosed callbyvalueApply baseApply closedConclusion applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation

Latex:
\mforall{}[G,b,x,y:Top].  \mforall{}[m:\mBbbN{}].
    (mk\_applies(if  b  then  x  else  y  fi  ;G;m)  \msim{}  if  b  then  mk\_applies(x;G;m)  else  mk\_applies(y;G;m)  fi  )



Date html generated: 2017_10_01-AM-08_41_02
Last ObjectModification: 2017_07_26-PM-04_28_21

Theory : untyped!computation


Home Index