Nuprl Lemma : mk_lambdas-sqequal-n

[F1,F2:Base].  ∀n,m:ℕ.  ((F1 ~n F2)  (mk_lambdas(F1;m) ~n mk_lambdas(F2;m)))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q add: m base: Base sqequal_n: ~n t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: mk_lambdas: mk_lambdas(F;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q decidable: Dec(P) subtract: m squash: T true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf add-zero primrec0_lemma subtract-1-ge-0 sqequal_n_wf nat_wf base_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert int_subtype_base bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf decidable__lt add-swap add-commutes add-associates squash_wf true_wf decidable__le intformnot_wf itermAdd_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_add_lemma int_term_value_subtract_lemma le_wf subtype_rel_self primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomSqequalN functionIsTypeImplies inhabitedIsType because_Cache unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination equalityIsType2 baseApply closedConclusion baseClosed applyEquality promote_hyp instantiate cumulativity addEquality sqequal_n rule hyp_replacement minusEquality imageElimination dependent_set_memberEquality_alt imageMemberEquality universeEquality sqequalZero equalityIsType1

Latex:
\mforall{}[F1,F2:Base].    \mforall{}n,m:\mBbbN{}.    ((F1  \msim{}n  F2)  {}\mRightarrow{}  (mk\_lambdas(F1;m)  \msim{}n  +  m  mk\_lambdas(F2;m)))



Date html generated: 2019_10_15-AM-10_58_59
Last ObjectModification: 2018_10_11-PM-11_06_04

Theory : untyped!computation


Home Index