Nuprl Lemma : mk_lambdas-sqequal-n2

[F1,F2:Base].  ∀n,m:ℕ.  (((m ≤ n)  (F1 ~n F2))  (mk_lambdas(F1;m) ~n mk_lambdas(F2;m)))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) nat: uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q subtract: m base: Base sqequal_n: ~n t
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: sq_type: SQType(T) guard: {T} mk_lambdas: mk_lambdas(F;m) and: P ∧ Q so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  subtype_base_sq int_subtype_base nat_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermVar_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf primrec0_lemma decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma le_wf sqequal_n_wf subtract_wf all_wf nat_wf set_wf less_than_wf primrec-wf2 set_subtype_base base_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformless_wf int_formula_prop_less_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__lt primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis hypothesisEquality setElimination rename dependent_functionElimination because_Cache unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation functionEquality dependent_set_memberEquality baseApply closedConclusion baseClosed applyEquality equalityElimination productElimination promote_hyp sqequal_n rule sqequalZero

Latex:
\mforall{}[F1,F2:Base].    \mforall{}n,m:\mBbbN{}.    (((m  \mleq{}  n)  {}\mRightarrow{}  (F1  \msim{}n  -  m  F2))  {}\mRightarrow{}  (mk\_lambdas(F1;m)  \msim{}n  mk\_lambdas(F2;m)))



Date html generated: 2017_10_01-AM-08_43_10
Last ObjectModification: 2017_07_26-PM-04_29_36

Theory : untyped!computation


Home Index