Nuprl Lemma : mk_lambdas_wf

[T:Type]. ∀[m:ℕ]. ∀[A:ℕm ⟶ Type]. ∀[F:T].  (mk_lambdas(F;m) ∈ funtype(m;A;T))


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mk_lambdas: mk_lambdas(F;m) nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: funtype: funtype(n;A;T) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b int_seg: {i..j-} lelt: i ≤ j < k nequal: a ≠ b ∈  subtract: m le: A ≤ B less_than: a < b subtype_rel: A ⊆B squash: T true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf primrec0_lemma decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-member-int_seg2 lelt_wf subtype_rel-equal primrec_wf le_wf int_seg_properties itermAdd_wf int_term_value_add_lemma decidable__lt decidable__equal_int intformeq_wf int_formula_prop_eq_lemma add-associates minus-one-mul add-swap add-commutes itermMultiply_wf int_term_value_mul_lemma primrec-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality unionElimination because_Cache equalityElimination productElimination promote_hyp instantiate applyEquality functionExtensionality dependent_set_memberEquality addEquality imageElimination multiplyEquality minusEquality imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[m:\mBbbN{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  Type].  \mforall{}[F:T].    (mk\_lambdas(F;m)  \mmember{}  funtype(m;A;T))



Date html generated: 2017_10_01-AM-08_40_04
Last ObjectModification: 2017_07_26-PM-04_27_52

Theory : untyped!computation


Home Index