is mentioned by
Thm* h:({2..(n+1)}). Thm* n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h) | [prime_factorization_exists] |
Thm* 2 n < k+1 Thm* Thm* (i:{2..k}. ni 0<g(i) prime(i)) Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; k; h)) | [prime_factorization_existsLEMMA] |
Thm* prime(z) Thm* Thm* (g':({2..k}). Thm* ({2..k}(g) = {2..k}(g') Thm* (& g'(z) = 0 Thm* (& (u:{2..k}. z<u g'(u) = g(u))) | [can_reduce_composite_factor2] |
Thm* xy<k Thm* Thm* (h:({2..k}). Thm* ({2..k}(g) = {2..k}(h) Thm* (& h(xy) = 0 Thm* (& (u:{2..k}. xy<u h(u) = g(u))) | [can_reduce_composite_factor] |
Thm* xx<k Thm* Thm* {2..k}(g) = {2..k}(split_factor1(g; x)) Thm* & split_factor1(g; x)(xx) = 0 Thm* & (u:{2..k}. xx<u split_factor1(g; x)(u) = g(u)) | [split_factor1_char] |
Thm* xy<k Thm* Thm* x<y Thm* Thm* {2..k}(g) = {2..k}(split_factor2(g; x; y)) Thm* & split_factor2(g; x; y)(xy) = 0 Thm* & (u:{2..k}. xy<u split_factor2(g; x; y)(u) = g(u)) | [split_factor2_char] |
Thm* is_prime_factorization(a; b; g) Thm* Thm* is_prime_factorization(a; b; h) {a..b}(g) = {a..b}(h) g = h | [prime_factorization_unique] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) Thm* Thm* p | {a..b}(f) {a..b}(f) = p{a..b}(reduce_factorization(f; p)) | [remove_prime_factor] |
Thm* is_prime_factorization(a; b; f) Thm* Thm* prime(p) p | {a..b}(f) p {a..b} & 0<f(p) | [prime_factorization_includes_prime_divisors] |
[factor_divides_evalfactorization] | |
[eval_factorization_nullnorm] | |
[eval_factorization_intseg_null] | |
Thm* 2j 0<f(j) {a..b}(reduce_factorization(f; j))<{a..b}(f) | [eval_reduce_factorization_less] |
Thm* 0<f(z) {a..b}(f) = z{a..b}(reduce_factorization(f; z)) | [eval_factorization_pluck] |
Thm* {a..b}(f){a..b}(g) = {a..b}(i.f(i)+g(i)) | [eval_factorization_prod] |
Thm* {a..b}(f) = 1 (i:{a..b}. f(i) = 0) | [eval_factorization_not_one] |
[eval_factorization_one_c] | |
[eval_factorization_one_b] | |
[eval_factorization_one] | |
[eval_factorization_nat_plus] | |
[eval_trivial_factorization] | |
Thm* ac c<b {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f) | [eval_factorization_split_pluck] |
Thm* ac cb {a..b}(f) = {a..c}(f){c..b}(f) | [eval_factorization_split_mid] |
Def == (x:Prime. k<x f(x) = 0) & k = {2..k+1}(prime_mset_complete(f)) | [prime_factorization_of] |
Try larger context:
DiscrMathExt
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html