FTA Sections DiscrMathExt Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def  {a..b}(f) ==  i:{a..b}. if(i)

is mentioned by

Thm*  n:{1...}. 
Thm*  h:({2..(n+1)}). 
Thm*  n = {2..n+1}(h) & is_prime_factorization(2; (n+1); h)
[prime_factorization_exists]
Thm*  k:{2...}, n:g:({2..k}).
Thm*   n < k+1
Thm*  
Thm*  (i:{2..k}. ni  0<g(i prime(i))
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h) & is_prime_factorization(2; kh))
[prime_factorization_existsLEMMA]
Thm*  k:{2...}, g:({2..k}), z:{2..k}.
Thm*  prime(z)
Thm*  
Thm*  (g':({2..k}). 
Thm*  ({2..k}(g) = {2..k}(g')
Thm*  (g'(z) = 0
Thm*  (& (u:{2..k}. z<u  g'(u) = g(u)))
[can_reduce_composite_factor2]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  (h:({2..k}). 
Thm*  ({2..k}(g) = {2..k}(h)
Thm*  (h(xy) = 0
Thm*  (& (u:{2..k}. xy<u  h(u) = g(u)))
[can_reduce_composite_factor]
Thm*  k:{2...}, g:({2..k}), x:{2..k}.
Thm*  xx<k
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor1(gx))
Thm*  & split_factor1(gx)(xx) = 0
Thm*  & (u:{2..k}. xx<u  split_factor1(gx)(u) = g(u))
[split_factor1_char]
Thm*  k:{2...}, g:({2..k}), x,y:{2..k}.
Thm*  xy<k
Thm*  
Thm*  x<y
Thm*  
Thm*  {2..k}(g) = {2..k}(split_factor2(gxy))
Thm*  & split_factor2(gxy)(xy) = 0
Thm*  & (u:{2..k}. xy<u  split_factor2(gxy)(u) = g(u))
[split_factor2_char]
Thm*  a:{2...}, b:g,h:({a..b}).
Thm*  is_prime_factorization(abg)
Thm*  
Thm*  is_prime_factorization(abh {a..b}(g) = {a..b}(h g = h
[prime_factorization_unique]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p)
Thm*  
Thm*  p | {a..b}(f {a..b}(f) = p{a..b}(reduce_factorization(fp))
[remove_prime_factor]
Thm*  a:b:f:({a..b}), p:.
Thm*  is_prime_factorization(abf)
Thm*  
Thm*  prime(p p | {a..b}(f p  {a..b} & 0<f(p)
[prime_factorization_includes_prime_divisors]
Thm*  a,b:f:({a..b}), j:{a..b}. 0<f(j j | {a..b}(f)[factor_divides_evalfactorization]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = {a..a}(f)[eval_factorization_nullnorm]
Thm*  a,b:f:({a..b}). ba  {a..b}(f) = 1[eval_factorization_intseg_null]
Thm*  a:b:f:({a..b}), j:{a..b}.
Thm*  2j  0<f(j {a..b}(reduce_factorization(fj))<{a..b}(f)
[eval_reduce_factorization_less]
Thm*  a,b:f:({a..b}), z:{a..b}.
Thm*  0<f(z {a..b}(f) = z{a..b}(reduce_factorization(fz))
[eval_factorization_pluck]
Thm*  a,b:f,g:({a..b}).
Thm*  {a..b}(f){a..b}(g) = {a..b}(i.f(i)+g(i))
[eval_factorization_prod]
Thm*  a:{2...}, b:f:({a..b}).
Thm*  {a..b}(f) = 1  (i:{a..b}. f(i) = 0)
[eval_factorization_not_one]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  f = (x.0)[eval_factorization_one_c]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. 0<f(i))[eval_factorization_one_b]
Thm*  a:{2...}, b:f:({a..b}). {a..b}(f) = 1  (i:{a..b}. f(i) = 0)[eval_factorization_one]
Thm*  a:b:f:({a..b}). {a..b}(f [eval_factorization_nat_plus]
Thm*  a,b:j:{a..b}. {a..b}(trivial_factorization(j)) = j[eval_trivial_factorization]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  c<b  {a..b}(f) = {a..c}(f)cf(c){c+1..b}(f)
[eval_factorization_split_pluck]
Thm*  a,c,b:f:({a..b}).
Thm*  ac  cb  {a..b}(f) = {a..c}(f){c..b}(f)
[eval_factorization_split_mid]
Def  f is a factorization of k
Def  == (x:Primek<x  f(x) = 0) & k = {2..k+1}(prime_mset_complete(f))
[prime_factorization_of]

Try larger context: DiscrMathExt IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

FTA Sections DiscrMathExt Doc