(13steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
prime
factorization
existsLEMMA
1
1.
k
: {2...}
2.
n
:
3.
n1
:
.
3.
n1
<
n
3.
3.
(
g
:({2..
k
}
).
3. (
2
n1
<
k
+1
3. (
3. (
(
i
:{2..
k
}.
n1
i
0<
g
(
i
)
prime(
i
))
3. (
3. (
(
h
:({2..
k
}
).
3. ((
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)))
4.
g
: {2..
k
}
5. 2
n
6.
n
<
k
+1
7.
i
:{2..
k
}.
n
i
0<
g
(
i
)
prime(
i
)
h
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)
By:
Decide:
n
= 2 ...w
Generated subgoals:
1
8.
n
= 2
h
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)
3
steps
2
8.
n
= 2
h
:({2..
k
}
).
{2..
k
}(
g
) =
{2..
k
}(
h
) & is_prime_factorization(2;
k
;
h
)
8
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(13steps total)
PrintForm
Definitions
Lemmas
FTA
Sections
DiscrMathExt
Doc