PrintForm Definitions exponent Sections AutomataTheory Doc

At: auto2 lemma 4 1 1 1 1 1 1 1 1 1 2

1. Alph: Type
2. R: Alph*Alph*Prop
3. n:
4. (x:Alph*. R(x,x)) & (x,y:Alph*. R(x,y) R(y,x)) & (x,y,z:Alph*. R(x,y) & R(y,z) R(x,z)) & (x,y,z:Alph*. R(x,y) R((z @ x),z @ y)) & (w:(nAlph*). l:Alph*. i:n. R(l,w(i)))
5. b: Alph*
6. c: Alph*
7. n@0:
8. l:Alph*. ||l|| < n@0 (a':Alph*. ||a'|| < nn & R((l @ b),a' @ b) & R((l @ c),a' @ c))
9. l: Alph*
10. ||l|| = n@0
11. a,b,c:Alph*. ||a||nn (a':Alph*. ||a'|| < ||a|| & R((a @ b),a' @ b) & R((a @ c),a' @ c))
12. ||l|| < nn

a':Alph*. ||a'|| < nn & R((l @ b),a' @ b) & R((l @ c),a' @ c)

By:
Witness11 l
THEN
Witness12 b


Generated subgoal:

111. ||l|| < nn
12. c:Alph*. ||l||nn (a':Alph*. ||a'|| < ||l|| & R((l @ b),a' @ b) & R((l @ c),a' @ c))
a':Alph*. ||a'|| < nn & R((l @ b),a' @ b) & R((l @ c),a' @ c)


About:
existslistandless_thanmultiplyapplyuniverse
functionpropallimpliesnatural_numberequalint