PrintForm Definitions finite sets Sections AutomataTheory Doc

At: phole aux 2 1 1 1 2 1

1. n: {2...}
2. f:(n(-1+n)). i:n, j:i. f(i) = f(j)
3. f: (1+n)n
4. ii:{1..(1+n)}, jj:ii. f(ii) = f(jj)
5. i: n
6. j: i
7. if f(i)=n-1 f(n) else f(i) fi = if f(j)=n-1 f(n) else f(j) fi (-1+n)

i:1, j:i. f(i) = f(j)

By:
MoveToConcl 7
THEN
SplitOnConclITEs


Generated subgoals:

17. f(i) = n-1
8. f(j) = n-1
f(n) = f(n) (-1+n) (i:1, j:i. f(i) = f(j))
27. f(i) = n-1
8. f(j) = n-1
f(n) = f(j) (-1+n) (i:1, j:i. f(i) = f(j))
37. f(i) = n-1
8. f(j) = n-1
f(i) = f(n) (-1+n) (i:1, j:i. f(i) = f(j))
47. f(i) = n-1
8. f(j) = n-1
f(i) = f(j) (-1+n) (i:1, j:i. f(i) = f(j))


About:
existsnatural_numberequalapplyallfunction
addminusifthenelsesubtractimplies