Who Cites action effect? | |
action_effect | Def action_effect(a;es;fs) == < e.smt | e < e es | e.kind = a > > + < mk_smt(f.var, f.var, f.typ) | f < f fs | a f.acts > > |
Thm* a:Label, es:Collection(eff()), fs:Collection(frame()). action_effect(a;es;fs) Collection(smt()) | |
col_subst2 | Def col_subst2(c;r) == col_map_subst(as.rel_subst2(as;r); < zip(rel_primed_vars(r);s) | s col_list_prod(map(c;rel_primed_vars(r))) > ) |
Thm* c:(LabelCollection(Term)), r:rel(). col_subst2(c;r) Fmla | |
covers_rel | Def covers_rel(A;r) == x:Label. rel_mentions(r;x) covers_var(A;x) |
Thm* A:ioa{i:l}(), r:rel(). covers_rel(A;r) Prop | |
ioa_mng | Def [[A]] rho de e == mk_sm([[A.da]] rho, [[A.ds]] rho, s.[[A.init]] rho A.ds < > de e s niltrace(), s1,a,s2. (p:pre(). p A.pre p.kind = kind(a) [[p.rel]] rho A.ds dec_lookup(A.da;kind(a)) de e s1 value(a) niltrace()) & (ef:eff(). ef A.eff ef.kind = kind(a) s2.ef.smt.lbl = [[ef.smt.term]] 1of(e) s1 value(a) niltrace() [[ef.smt.typ]] rho) & (fr:frame(). fr A.frame (kind(a) fr.acts) s2.fr.var = s1.fr.var [[fr.typ]] rho)) |
Thm* A:ioa{i:l}(), de:sig(), rho:Decl, e:{[[de]] rho}. tc_ioa(A;de) ioa_mentions_trace(A) [[A]] rho de e sm{i:l}() | |
tc_ioa | Def tc_ioa(A;de) == tc_pred(A.init;A.ds; < > ;de) & (p:pre(). p A.pre tc(p.rel;A.ds;dec_lookup(A.da;p.kind);de)) & (ef:eff(). ef A.eff mk_dec(ef.kind, ef.typ) A.da & tc_eff(ef;A.ds;de)) & (f:frame(). f A.frame mk_dec(f.var, f.typ) A.ds) |
Thm* A:ioa{i:l}(), de:sig(). tc_ioa(A;de) Prop | |
tc_pred | Def tc_pred(P;ds;da;de) == r:rel(). r P tc(r;ds;da;de) |
Thm* P:Fmla, ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_pred(P;ds;da;de) Prop | |
tc | Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & (i:. i < ||r.args|| (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False |
Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop | |
tc_eff | Def tc_eff(ef;ds;de) == tc_smt(ef.smt;ds; < ef.typ > ;de) |
Thm* ef:eff(), ds:Collection(dec()), de:sig(). tc_eff(ef;ds;de) Prop | |
tc_smt | Def tc_smt(s;ds;da;de) == mk_dec(s.lbl, s.typ) ds & s.typ term_types(ds;da;de;s.term) |
Thm* s:smt(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_smt(s;ds;da;de) Prop | |
term_types | Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t) |
Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType) | |
dec_lookup | Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > > |
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType) | |
decl | Def Decl == LabelType |
Thm* Decl{i} Type{i'} | |
trace_consistent_rel | Def trace_consistent_rel(rho;da;R;r) == i:||r.args||. trace_consistent(rho;da;R;r.args[i]) |
Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(LabelLabel). trace_consistent_rel(rho;da;R;r) Prop | |
trace_consistent | Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t) subtype_rel(({a:([[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > )))) |
Thm* rho:Decl, t:Term, da:Collection(dec()), R:(LabelLabel). trace_consistent(rho;da;R;t) Prop | |
decls_mng | Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds } |
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl | |
ioa | Def ioa{i:l}() == Collection(dec())Collection(dec())Collection(rel())Collection(pre())Collection(eff())Collection(frame()) |
Thm* ioa{i:l}() Type{i'} | |
ioa_mentions_trace | Def ioa_mentions_trace(A) == (e:eff(). e A.eff & mentions_trace(e.smt.term)) (p:pre(). p A.pre & rel_mentions_trace(p.rel)) (r:rel(). r A.init & rel_mentions_trace(r)) |
Thm* A:ioa{i:l}(). ioa_mentions_trace(A) Prop | |
record_pair | Def {p} == {1of(p)}{2of(p)} |
Thm* p:(DeclDecl). {p} Type | |
col_map_subst | Def col_map_subst(x.f(x);c) == < f(x) | x c > |
Thm* f:(((LabelTerm) List)rel()), c:Collection((LabelTerm) List). col_map_subst(x.f(x);c) Collection(rel()) | |
pre | Def pre() == LabelLabelrel() |
Thm* pre() Type | |
pred_mng | Def [[p]] rho ds da de e s a tr == r:rel(). r p [[r]] rho ds da de e s a tr |
Thm* p:Fmla, ds,daa:Collection(dec()), da:Collection(SimpleType), de:sig(), rho:Decl, e:{[[de]] rho}, s:{[[ds]] rho}, a:[[da]] rho, tr:trace_env([[daa]] rho). trace_consistent_pred(rho;daa;tr.proj;p) tc_pred(p;ds;da;de) [[p]] rho ds da de e s a tr Prop | |
rel | Def rel() == relname()(Term List) |
Thm* rel() Type | |
sig | Def sig() == (LabelSimpleType)(Label(SimpleType List)) |
Thm* sig() Type | |
trace_env | Def trace_env(d) == ((d) List)(LabelLabel) |
Thm* d:Decl. trace_env(d) Type | |
sigma | Def (d) == l:Labeldecl_type(d;l) |
Thm* d:Decl. (d) Type | |
single_valued_decls | Def single_valued_decls(c) == x:Label, t1,t2:SimpleType. mk_dec(x, t1) c mk_dec(x, t2) c t1 = t2 |
Thm* c:Collection(dec()). single_valued_decls(c) Prop | |
sm_state | Def M.state == {M.ds} |
Thm* M:sm{i:l}(). M.state Type | |
smts_eff | Def smts_eff(ss;x) == smt_terms( < s ss | s.lbl = x > ) |
Thm* ss:Collection(smt()), x:Label. smts_eff(ss;x) Collection(Term) | |
covers_var | Def covers_var(A;x) == fr:frame(). fr < fr A.frame | fr.var = x > & (a:Label. (a fr.acts) (ef:eff(). ef < ef A.eff | ef.kind = a & ef.smt.lbl = x > )) |
Thm* A:ioa{i:l}(), x:Label. covers_var(A;x) Prop | |
eff | Def eff() == LabelLabelSimpleTypesmt() |
Thm* eff() Type | |
smt_terms | Def smt_terms(c) == < s.term | s c > |
Thm* c:Collection(smt()). smt_terms(c) Collection(Term) | |
smt | Def smt() == LabelTermSimpleType |
Thm* smt() Type | |
term | Def Term == Tree(ts()) |
Thm* Term Type | |
frame | Def frame() == LabelSimpleType(Label List) |
Thm* frame() Type | |
rel_mentions | Def rel_mentions(r;x) == i:. i < ||r.args|| & (x term_vars(r.args[i])) |
Thm* r:rel(), x:Label. rel_mentions(r;x) Prop | |
dec | Def dec() == LabelSimpleType |
Thm* dec() Type | |
relname | Def relname() == SimpleType+Label |
Thm* relname() Type | |
st_app | Def st_app(c1;c2) == (s2c2.(s1c1.st_app1(s1;s2))) |
Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType) | |
st_app1 | Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < > |
Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType) | |
st | Def SimpleType == Tree(Label+Unit) |
Thm* SimpleType Type | |
record | Def {d} == l:Labeldecl_type(d;l) |
Thm* d:Decl. {d} Type | |
ts | Def ts() == Label+Label+Label+Label+Label |
Thm* ts() Type | |
lbl | Def Label == {p:Pattern| ground_ptn(p) } |
Thm* Label Type | |
assert | Def b == if b True else False fi |
Thm* b:. b Prop | |
col_filter | Def < x c | P(x) > (x) == x c & P(x) |
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T) | |
col_map | Def < f(x) | x c > (y) == x:T. x c & y = f(x) T' |
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T') | |
col_add | Def (a + b)(x) == x a x b |
Thm* T:Type, a,b:Collection(T). (a + b) Collection(T) | |
col_list_prod | Def col_list_prod(l)(x) == ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i]) |
Thm* T:Type, l:Collection(T) List. col_list_prod(l) Collection(T List) | |
col_accum | Def (xc.f(x))(y) == x:T. x c & y f(x) |
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T') | |
col_member | Def x c == c(x) |
Thm* T:Type, x:T, c:Collection(T). x c Prop | |
ioa_da | Def t.da == 1of(2of(t)) |
Thm* t:ioa{i:l}(). t.da Collection(dec()) | |
ioa_ds | Def t.ds == 1of(t) |
Thm* t:ioa{i:l}(). t.ds Collection(dec()) | |
ioa_eff | Def t.eff == 1of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.eff Collection(eff()) | |
ioa_frame | Def t.frame == 2of(2of(2of(2of(2of(t))))) |
Thm* t:ioa{i:l}(). t.frame Collection(frame()) | |
rel_mng | Def [[r]] rho ds da de e s a tr == list_accum(x,t.x([[t]] 1of(e) s a tr);[[r.name]] rho 2of(e) ;r.args) |
Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s:{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r) tc(r;ds;st1;de) [[r]] rho ds st1 de e s a tr Prop | |
Thm* rho:Decl, ds,daa:Collection(dec()), da1:Collection(SimpleType), de:sig(), s:{[[ds]] rho}, e:{[[de]] rho}, tr:trace_env([[daa]] rho), r:rel(). closed_rel(r) tc(r;ds;da1;de) trace_consistent_rel(rho;daa;tr.proj;r) [[r]] rho ds da1 de e s tr Prop | |
term_mng | Def [[t]] e s a tr == iterate(statevar x- > s.x statevar x'- > s.x funsymbol f- > e.f freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t) |
tproj | Def tre.P == tre.trace | tre.proj(P) |
Thm* d:Decl, tre:trace_env(d), P:Label. tre.P (d) List | |
trace_projection | Def tr | P == filter(x.P(kind(x));tr) |
Thm* d:Decl, tr:(d) List, P:(Label). tr | P (d) List | |
kind | Def kind(a) == 1of(a) |
Thm* d:Decl, a:(d). kind(a) Label | |
Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern | |
l_member | Def (x l) == i:. i < ||l|| & x = l[i] T |
Thm* T:Type, x:T, l:T List. (x l) Prop | |
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
Thm* A:Type, l:A List. ||l|| | |
Thm* ||nil|| | |
nat | Def == {i:| 0i } |
Thm* Type | |
int_seg | Def {i..j} == {k:| i k < j } |
Thm* m,n:. {m..n} Type | |
lelt | Def i j < k == ij & j < k |
le | Def AB == B < A |
Thm* i,j:. (ij) Prop | |
not | Def A == A False |
Thm* A:Prop. (A) Prop | |
rel_subst2 | Def rel_subst2(as;r) == mk_rel(r.name, map(t.term_subst2(as;t);r.args)) |
Thm* r:rel(), as:(LabelTerm) List. rel_subst2(as;r) rel() | |
sig_mng | Def [[s]] rho == < op.[[s.fun(op)]] rho,R.[[s.rel(R)]] rho > |
Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i}Decl{i'} | |
unzip | Def unzip(as) == < map(p.1of(p);as),map(p.2of(p);as) > |
Thm* T1,T2:Type, as:(T1T2) List. unzip(as) (T1 List)(T2 List) | |
frame_typ | Def t.typ == 1of(2of(t)) |
Thm* t:frame(). t.typ SimpleType | |
frame_var | Def t.var == 1of(t) |
Thm* t:frame(). t.var Label | |
eff_kind | Def t.kind == 1of(t) |
Thm* t:eff(). t.kind Label | |
dec_lbl | Def t.lbl == 1of(t) |
Thm* t:dec(). t.lbl Label | |
ioa_init | Def t.init == 1of(2of(2of(t))) |
Thm* t:ioa{i:l}(). t.init Collection(rel()) | |
Thm* t:ioa{i:l}(). t.init Fmla | |
ioa_pre | Def t.pre == 1of(2of(2of(2of(t)))) |
Thm* t:ioa{i:l}(). t.pre Collection(pre()) | |
smt_term | Def t.term == 1of(2of(t)) |
Thm* t:smt(). t.term Term | |
smt_lbl | Def t.lbl == 1of(t) |
Thm* t:smt(). t.lbl Label | |
pre_kind | Def t.kind == 1of(t) |
Thm* t:pre(). t.kind Label | |
term_subst2 | Def term_subst2(as;t) == iterate(statevar v- > v statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t) |
Thm* t:Term, as:(LabelTerm) List. term_subst2(as;t) Term | |
rel_name | Def t.name == 1of(t) |
Thm* t:rel(). t.name relname() | |
sig_fun | Def t.fun == 1of(t) |
Thm* t:sig(). t.fun LabelSimpleType | |
sm_ds | Def t.ds == 1of(2of(t)) |
Thm* t:sm{i:l}(). t.ds Decl | |
eff_typ | Def t.typ == 1of(2of(2of(t))) |
Thm* t:eff(). t.typ SimpleType | |
apply_alist | Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > )) |
Thm* T:Type, as:(LabelT) List, l:Label, d:T. apply_alist(as;l;d) T | |
trace_env_trace | Def t.trace == 1of(t) |
Thm* d:Decl, t:trace_env(d). t.trace (d) List | |
pi1 | Def 1of(t) == t.1 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A | |
rel_primed_vars | Def rel_primed_vars(r) == reduce(t,vs. term_primed_vars(t) @ vs;nil;r.args) |
Thm* r:rel(). rel_primed_vars(r) Label List | |
sm_trans | Def t.trans == 2of(2of(2of(t))) |
Thm* M:sm{i:l}(). M.trans M.stateM.actionM.stateProp | |
subst_mentions_trace | Def subst_mentions_trace(as) == reduce(a,b. mentions_trace(2of(a)) b;false;as) |
Thm* as:(LabelTerm) List. subst_mentions_trace(as) | |
trace_env_proj | Def t.proj == 2of(t) |
Thm* d:Decl, t:trace_env(d). t.proj LabelLabel | |
frame_acts | Def t.acts == 2of(2of(t)) |
Thm* t:frame(). t.acts Label List | |
eff_smt | Def t.smt == 2of(2of(2of(t))) |
Thm* t:eff(). t.smt smt() | |
dec_typ | Def t.typ == 2of(t) |
Thm* t:dec(). t.typ SimpleType | |
rel_mentions_trace | Def rel_mentions_trace(r) == reduce(x,y. mentions_trace(x) y;false;r.args) |
Thm* r:rel(). rel_mentions_trace(r) | |
pre_rel | Def t.rel == 2of(2of(t)) |
Thm* t:pre(). t.rel rel() | |
value | Def value(a) == 2of(a) |
Thm* d:Decl, a:(d). value(a) d(kind(a)) | |
smt_typ | Def t.typ == 2of(2of(t)) |
Thm* t:smt(). t.typ SimpleType | |
rel_args | Def t.args == 2of(t) |
Thm* t:rel(). t.args Term List | |
sig_rel | Def t.rel == 2of(t) |
Thm* t:sig(). t.rel Label(SimpleType List) | |
pi2 | Def 2of(t) == t.2 |
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p)) | |
select | Def l[i] == hd(nth_tl(i;l)) |
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A | |
tvar | Def l == tree_leaf(ts_var(l)) |
Thm* l:Label. l Term | |
mk_smt | Def mk_smt(lbl, term, typ) == < lbl,term,typ > |
Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt() | |
lbls_member | Def x ls == reduce(a,b. x = a b;false;ls) |
Thm* x:Label, ls:Label List. x ls | |
nth_tl | Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive) |
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List | |
le_int | Def ij == j < i |
Thm* i,j:. (ij) | |
bnot | Def b == if b false else true fi |
Thm* b:. b | |
dec_mng | Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho |
Thm* rho:Decl, d:dec(). [[d]] rho Decl | |
dbase | Def x:y(a) == if a = x y else Top fi |
Thm* x:Label, y:Type. x:y Decl | |
term_mentions_guard | Def term_mentions_guard(g;t) == term_iterate(x.false;x.false;x.false;x.false;x.x = g;x,y. x y;t) |
Thm* t:Term, g:Label. term_mentions_guard(g;t) | |
st_eq | Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false); a. InjCase(y; y'. false; b. true)) Default = > false Default = > false (recursive) |
Thm* s1,s2:SimpleType. st_eq(s1;s2) | |
eq_lbl | Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive) |
Thm* l1,l2:Pattern. l1 = l2 | |
zip | Def zip(as;bs) == Case of as; nil nil ; a.as' Case of bs; nil nil ; b.bs' [ < a,b > / zip(as';bs')] (recursive) |
Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1T2) List | |
map | Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive) |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List | |
dall | Def D(i) for i I(x) == i:I. D(i)(x) |
Thm* I:Type, D:(IDecl). D(i) for i I Decl | |
col | Def Collection(T) == TProp |
Thm* T:Type{i'}. Collection{i}(T) Type{i'} | |
mentions_trace | Def mentions_trace(t) == iterate(statevar x- > false statevar x'- > false funsymbol x- > false freevar x- > false trace(P)- > true x(y)- > x y over t) |
Thm* t:Term. mentions_trace(t) | |
relname_mng | Def [[rn]] rho e == Case(rn) Case eq(Q) = > x,y. x = y [[Q]] rho Case R = > e.R Default = > True |
r_select | Def r.l == r(l) |
Thm* d:Decl, r:{d}, l:Label. r.l d(l) | |
st_list_mng | Def [[l]] rho == reduce(s,m. [[s]] rhom;Prop;l) |
Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'} | |
st_mng | Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s) |
Thm* rho:Decl, s:SimpleType. [[s]] rho Type | |
niltrace | Def niltrace() == mk_trace_env(nil, P,k. false) |
Thm* d:Decl. niltrace() trace_env(d) | |
col_none | Def < > (x) == False |
Thm* T:Type. < > Collection(T) | |
mk_sm | Def mk_sm(da, ds, init, trans) == < da,ds,init,trans > |
Thm* da,ds:Decl, init:({ds}Prop), trans:({ds}(da){ds}Prop). mk_sm(da, ds, init, trans) sm{i:l}() | |
ground_ptn | Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive) |
Thm* p:Pattern. ground_ptn(p) | |
ptn | Def Pattern == rec(T.ptn_con(T)) |
Thm* Pattern Type | |
term_primed_vars | Def term_primed_vars(t) == iterate(statevar v- > nil statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
Thm* t:Term. term_primed_vars(t) Label List | |
term_vars | Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t) |
Thm* t:Term. term_vars(t) Label List | |
append | Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive) |
Thm* T:Type, as,bs:T List. (as @ bs) T List | |
find | Def (first x as s.t. P(x) else d) == Case of filter(x.P(x);as); nil d ; a.b a |
Thm* T:Type, P:(T), as:T List, d:T. (first a as s.t. P(a) else d) T | |
filter | Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l) |
Thm* T:Type, P:(T), l:T List. filter(P;l) T List | |
reduce | Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive) |
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B | |
mk_rel | Def mk_rel(name, args) == < name,args > |
Thm* name:relname(), args:Term List. mk_rel(name, args) rel() | |
case_relname_other | Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1]) |
case_ptn_var | Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ptn_int | Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
term_iter | Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t) |
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A | |
term_iterate | Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t) |
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A | |
ts_case | Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = > |
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A | |
case_ts_trace | Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_fvar | Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_op | Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
case_ts_pvar | Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1]) |
hd | Def hd(l) == Case of l; nil "?" ; h.t h |
Thm* A:Type, l:A List. ||l||1 hd(l) A | |
Thm* A:Type, l:A List. hd(l) A | |
decl_type | Def decl_type(d;x) == d(x) |
Thm* dec:Decl, x:Label. decl_type(dec;x) Type | |
mk_dec | Def mk_dec(lbl, typ) == < lbl,typ > |
Thm* lbl:Label, typ:SimpleType. mk_dec(lbl, typ) dec() | |
bor | Def p q == if p true else q fi |
Thm* p,q:. (p q) | |
t_iterate | Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive) |
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A | |
case_default | Def Default = > body(value,value) == body |
case_relname_eq | Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case | Def Case(value) body == body(value,value) |
tree | Def Tree(E) == rec(T.tree_con(E;T)) |
Thm* E:Type. Tree(E) Type | |
ts_var | Def ts_var(x) == inl(x) |
Thm* x:Label. ts_var(x) ts() | |
ttrace | Def trace(l) == tree_leaf(ts_trace(l)) |
Thm* l:Label. trace(l) Term | |
tfvar | Def l == tree_leaf(ts_fvar(l)) |
Thm* l:Label. l Term | |
topr | Def f == tree_leaf(ts_op(f)) |
Thm* f:Label. f Term | |
tpvar | Def l' == tree_leaf(ts_pvar(l)) |
Thm* l:Label. l' Term | |
typ | Def t == tree_leaf(inl(t)) |
Thm* t:Label. t SimpleType | |
tree_leaf | Def tree_leaf(x) == inl(x) |
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T) | |
Thm* E:Type, x:E. tree_leaf(x) Tree(E) | |
band | Def pq == if p q else false fi |
Thm* p,q:. (pq) | |
case_lbl_pair | Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2)))) |
eq_atom | Def x=yAtom == if x=yAtomtrue; false fi |
Thm* x,y:Atom. x=yAtom | |
eq_int | Def i=j == if i=j true ; false fi |
Thm* i,j:. (i=j) | |
case_ptn_atom | Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_mk_dec | Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1) |
st_lift | Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top) |
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type | |
mk_trace_env | Def mk_trace_env(trace, proj) == < trace,proj > |
Thm* d:Decl, trace:(d) List, proj:(LabelLabel). mk_trace_env(trace, proj) trace_env(d) | |
list_accum | Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive) |
ptn_con | Def ptn_con(T) == Atom++Atom+(TT) |
Thm* T:Type. ptn_con(T) Type | |
tapp | Def t1 t2 == tree_node( < t1, t2 > ) |
Thm* t1,t2:Term. t1 t2 Term | |
tl | Def tl(l) == Case of l; nil nil ; h.t t |
Thm* A:Type, l:A List. tl(l) A List | |
clbl | Def $x == ptn_atom("$x") |
lbl_pair | Def lbl_pr( < x, y > ) == ptn_pr( < x,y > ) |
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern | |
Thm* x,y:Label. lbl_pr( < x, y > ) Label | |
col_singleton | Def < x > (y) == y = x T |
Thm* T:Type, x:T. < x > Collection(T) | |
case_inr | Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x)) |
tree_con | Def tree_con(E;T) == E+(TT) |
Thm* E,T:Type. tree_con(E;T) Type | |
case_inl | Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue)) |
top | Def Top == Void given Void |
Thm* Top Type | |
case_tree_leaf | Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
case_node | Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0)) |
node | Def tree_node( < x, y > ) == tree_node( < x,y > ) |
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E) | |
ts_trace | Def ts_trace(x) == inr(inr(inr(inr(x)))) |
Thm* x:Label. ts_trace(x) ts() | |
ts_fvar | Def ts_fvar(x) == inr(inr(inr(inl(x)))) |
Thm* x:Label. ts_fvar(x) ts() | |
ts_op | Def ts_op(x) == inr(inr(inl(x))) |
Thm* x:Label. ts_op(x) ts() | |
ts_pvar | Def ts_pvar(x) == inr(inl(x)) |
Thm* x:Label. ts_pvar(x) ts() | |
lt_int | Def i < j == if i < j true ; false fi |
Thm* i,j:. (i < j) | |
ptn_atom | Def ptn_atom(x) == inl(x) |
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T) | |
Thm* x:Atom. ptn_atom(x) Pattern | |
Thm* x:Atom. ptn_atom(x) Label | |
ptn_pr | Def ptn_pr(x) == inr(inr(inr(x))) |
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T) | |
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern | |
tree_node | Def tree_node(x) == inr(x) |
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T) | |
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E) | |
case_ts_var | Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z)) |
About: