WhoCites Definitions mb automata 4 Sections GenAutomata Doc

Who Cites wp2?
wp2 Def wp2(A;a;Q) == (rQ.col_subst2(x.smts_eff(action_effect(a;A.eff;A.frame);x);r))
Thm* A:ioa{i:l}(), a:Label, Q:Fmla. wp2(A;a;Q) Fmla
action_effect Def action_effect(a;es;fs) == < e.smt | e < e es | e.kind = a > > + < mk_smt(f.var, f.var, f.typ) | f < f fs | a f.acts > >
Thm* a:Label, es:Collection(eff()), fs:Collection(frame()). action_effect(a;es;fs) Collection(smt())
closed_pred Def closed_pred(p) == r:rel(). r p closed_rel(r)
Thm* p:Fmla. closed_pred(p) Prop
tc_ioa Def tc_ioa(A;de) == tc_pred(A.init;A.ds; < > ;de) & (p:pre(). p A.pre tc(p.rel;A.ds;dec_lookup(A.da;p.kind);de)) & (ef:eff(). ef A.eff mk_dec(ef.kind, ef.typ) A.da & tc_eff(ef;A.ds;de)) & (f:frame(). f A.frame mk_dec(f.var, f.typ) A.ds)
Thm* A:ioa{i:l}(), de:sig(). tc_ioa(A;de) Prop
tc_pred Def tc_pred(P;ds;da;de) == r:rel(). r P tc(r;ds;da;de)
Thm* P:Fmla, ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_pred(P;ds;da;de) Prop
tc_eff Def tc_eff(ef;ds;de) == tc_smt(ef.smt;ds; < ef.typ > ;de)
Thm* ef:eff(), ds:Collection(dec()), de:sig(). tc_eff(ef;ds;de) Prop
tc Def tc(r;ds;da;de) == Case(r.name) Case eq(Q) = > ||r.args|| = 2 & Q term_types(ds;da;de;r.args[0]) & Q term_types(ds;da;de;r.args[1]) Case R = > ||de.rel(R)|| = ||r.args|| & (i:. i < ||r.args|| (de.rel(R))[i] term_types(ds;da;de;r.args[i])) Default = > False
Thm* r:rel(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc(r;ds;da;de) Prop
tc_smt Def tc_smt(s;ds;da;de) == mk_dec(s.lbl, s.typ) ds & s.typ term_types(ds;da;de;s.term)
Thm* s:smt(), ds:Collection(dec()), da:Collection(SimpleType), de:sig(). tc_smt(s;ds;da;de) Prop
term_types Def term_types(ds;da;de;t) == iterate(statevar x- > dec_lookup(ds;x) statevar x'- > dec_lookup(ds;x) funsymbol op- > < de.fun(op) > freevar x- > da trace(P)- > < lbl_pr( < Trace, P > ) > c1(c2)- > st_app(c1;c2) over t)
Thm* ds:Collection(dec()), da:Collection(SimpleType), de:sig(), t:Term. term_types(ds;da;de;t) Collection(SimpleType)
st_app Def st_app(c1;c2) == (s2c2.(s1c1.st_app1(s1;s2)))
Thm* c1,c2:Collection(SimpleType). st_app(c1;c2) Collection(SimpleType)
col_accum Def (xc.f(x))(y) == x:T. x c & y f(x)
Thm* T,T':Type, f:(TCollection(T')), c:Collection(T). (xc.f(x)) Collection(T')
col_subst2 Def col_subst2(c;r) == col_map_subst(as.rel_subst2(as;r); < zip(rel_primed_vars(r);s) | s col_list_prod(map(c;rel_primed_vars(r))) > )
Thm* c:(LabelCollection(Term)), r:rel(). col_subst2(c;r) Fmla
covers_pred Def covers_pred(A;p) == x:Label. pred_mentions(p;x) covers_var(A;x)
Thm* A:ioa{i:l}(), p:Fmla. covers_pred(A;p) Prop
ioa_mng Def [[A]] rho de e == mk_sm([[A.da]] rho, [[A.ds]] rho, s.[[A.init]] rho A.ds < > de e s niltrace(), s1,a,s2. (p:pre(). p A.pre p.kind = kind(a) [[p.rel]] rho A.ds dec_lookup(A.da;kind(a)) de e s1 value(a) niltrace()) & (ef:eff(). ef A.eff ef.kind = kind(a) s2.ef.smt.lbl = [[ef.smt.term]] 1of(e) s1 value(a) niltrace() [[ef.smt.typ]] rho) & (fr:frame(). fr A.frame (kind(a) fr.acts) s2.fr.var = s1.fr.var [[fr.typ]] rho))
Thm* A:ioa{i:l}(), de:sig(), rho:Decl, e:{[[de]] rho}. tc_ioa(A;de) ioa_mentions_trace(A) [[A]] rho de e sm{i:l}()
dec_lookup Def dec_lookup(ds;x) == < d.typ | d < d ds | d.lbl = x > >
Thm* ds:Collection(dec()), x:Label. dec_lookup(ds;x) Collection(SimpleType)
trace_consistent_pred Def trace_consistent_pred(rho;da;R;p) == (rp.trace_consistent_rel(rho;da;R;r))
Thm* p:Fmla, rho:Decl, da:Collection(dec()), R:(LabelLabel). trace_consistent_pred(rho;da;R;p) Prop
trace_consistent_rel Def trace_consistent_rel(rho;da;R;r) == i:||r.args||. trace_consistent(rho;da;R;r.args[i])
Thm* rho:Decl, r:rel(), da:Collection(dec()), R:(LabelLabel). trace_consistent_rel(rho;da;R;r) Prop
trace_consistent Def trace_consistent(rho;da;R;t) == g:Label. term_mentions_guard(g;t) subtype_rel(({a:([[da]] rho)| (R(g,kind(a))) } List); (rho(lbl_pr( < Trace, g > ))))
Thm* rho:Decl, t:Term, da:Collection(dec()), R:(LabelLabel). trace_consistent(rho;da;R;t) Prop
decls_mng Def [[ds]] rho == [[d]] rho for d {d:dec()| d ds }
Thm* ds:Collection(dec()), rho:Decl. [[ds]] rho Decl
ioa_mentions_trace Def ioa_mentions_trace(A) == (e:eff(). e A.eff & mentions_trace(e.smt.term)) (p:pre(). p A.pre & rel_mentions_trace(p.rel)) (r:rel(). r A.init & rel_mentions_trace(r))
Thm* A:ioa{i:l}(). ioa_mentions_trace(A) Prop
pred_mng Def [[p]] rho ds da de e s a tr == r:rel(). r p [[r]] rho ds da de e s a tr
Thm* p:Fmla, ds,daa:Collection(dec()), da:Collection(SimpleType), de:sig(), rho:Decl, e:{[[de]] rho}, s:{[[ds]] rho}, a:[[da]] rho, tr:trace_env([[daa]] rho). trace_consistent_pred(rho;daa;tr.proj;p) tc_pred(p;ds;da;de) [[p]] rho ds da de e s a tr Prop
pred_mng_2 Def pred_mng_2(p; rho; ds; da; de; e; s; s'; a; tr) == r:rel(). r p rel_mng_2(r; rho; ds; da; de; e; s; s'; a; tr)
Thm* p:Fmla, ds,daa:Collection(dec()), da:Collection(SimpleType), de:sig(), rho:Decl, e:{[[de]] rho}, s,s':{[[ds]] rho}, a:[[da]] rho, tr:trace_env([[daa]] rho). trace_consistent_pred(rho;daa;tr.proj;p) tc_pred(p;ds;da;de) pred_mng_2(p; rho; ds; da; de; e; s; s'; a; tr) Prop
Thm* p:Fmla, ds,daa:Collection(dec()), da:Collection(SimpleType), de:sig(), rho:Decl, e:{[[de]] rho}, s,s':{[[ds]] rho}, tr:trace_env([[daa]] rho). trace_consistent_pred(rho;daa;tr.proj;p) tc_pred(p;ds;da;de) closed_pred(p) pred_mng_2(p; rho; ds; da; de; e; s; s'; ; tr) Prop
single_valued_decls Def single_valued_decls(c) == x:Label, t1,t2:SimpleType. mk_dec(x, t1) c mk_dec(x, t2) c t1 = t2
Thm* c:Collection(dec()). single_valued_decls(c) Prop
smts_eff Def smts_eff(ss;x) == smt_terms( < s ss | s.lbl = x > )
Thm* ss:Collection(smt()), x:Label. smts_eff(ss;x) Collection(Term)
covers_var Def covers_var(A;x) == fr:frame(). fr < fr A.frame | fr.var = x > & (a:Label. (a fr.acts) (ef:eff(). ef < ef A.eff | ef.kind = a & ef.smt.lbl = x > ))
Thm* A:ioa{i:l}(), x:Label. covers_var(A;x) Prop
col_filter Def < x c | P(x) > (x) == x c & P(x)
Thm* T:Type, c:Collection(T), Q:(TProp). < i c | Q(i) > Collection(T)
col_map_subst Def col_map_subst(x.f(x);c) == < f(x) | x c >
Thm* f:(((LabelTerm) List)rel()), c:Collection((LabelTerm) List). col_map_subst(x.f(x);c) Collection(rel())
smt_terms Def smt_terms(c) == < s.term | s c >
Thm* c:Collection(smt()). smt_terms(c) Collection(Term)
col_map Def < f(x) | x c > (y) == x:T. x c & y = f(x) T'
Thm* T,T':Type, f:(TT'), c:Collection(T). < f(x) | x c > Collection(T')
col_add Def (a + b)(x) == x a x b
Thm* T:Type, a,b:Collection(T). (a + b) Collection(T)
col_list_prod Def col_list_prod(l)(x) == ||x|| = ||l|| & (i:. i < ||x|| x[i] l[i])
Thm* T:Type, l:Collection(T) List. col_list_prod(l) Collection(T List)
pred_mentions Def pred_mentions(p;x) == r:rel(). r p & rel_mentions(r;x)
Thm* p:Fmla, x:Label. pred_mentions(p;x) Prop
col_all Def (xc.P(x)) == x:T. x c P(x)
Thm* T:Type, c:Collection(T), P:(TProp). (xc.P(x)) Prop
col_member Def x c == c(x)
Thm* T:Type, x:T, c:Collection(T). x c Prop
st_app1 Def st_app1(s1;s2) == Case(s1) Case a;b = > if st_eq(a;s2) < b > else < > fi Default = > < >
Thm* s1,s2:SimpleType. st_app1(s1;s2) Collection(SimpleType)
col_none Def < > (x) == False
Thm* T:Type. < > Collection(T)
decl Def Decl == LabelType
Thm* Decl{i} Type{i'}
ioa Def ioa{i:l}() == Collection(dec())Collection(dec())Collection(rel())Collection(pre())Collection(eff())Collection(frame())
Thm* ioa{i:l}() Type{i'}
ioa_da Def t.da == 1of(2of(t))
Thm* t:ioa{i:l}(). t.da Collection(dec())
ioa_ds Def t.ds == 1of(t)
Thm* t:ioa{i:l}(). t.ds Collection(dec())
ioa_eff Def t.eff == 1of(2of(2of(2of(2of(t)))))
Thm* t:ioa{i:l}(). t.eff Collection(eff())
ioa_frame Def t.frame == 2of(2of(2of(2of(2of(t)))))
Thm* t:ioa{i:l}(). t.frame Collection(frame())
rel_mng Def [[r]] rho ds da de e s a tr == list_accum(x,t.x([[t]] 1of(e) s a tr);[[r.name]] rho 2of(e) ;r.args)
Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s:{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r) tc(r;ds;st1;de) [[r]] rho ds st1 de e s a tr Prop
Thm* rho:Decl, ds,daa:Collection(dec()), da1:Collection(SimpleType), de:sig(), s:{[[ds]] rho}, e:{[[de]] rho}, tr:trace_env([[daa]] rho), r:rel(). closed_rel(r) tc(r;ds;da1;de) trace_consistent_rel(rho;daa;tr.proj;r) [[r]] rho ds da1 de e s tr Prop
term_mng Def [[t]] e s a tr == iterate(statevar x- > s.x statevar x'- > s.x funsymbol f- > e.f freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t)
rel_mng_2 Def rel_mng_2(r; rho; ds; da; de; e; s; s'; a; tr) == list_accum(x,t.x([[t]] 1of(e) s s' a tr);[[r.name]] rho 2of(e) ;r.args)
Thm* r:rel(), ds,da:Collection(dec()), de:sig(), rho:Decl, st1:Collection(SimpleType), e:{[[de]] rho}, s,s':{[[ds]] rho}, a:[[st1]] rho, tr:trace_env([[da]] rho). trace_consistent_rel(rho;da;tr.proj;r) tc(r;ds;st1;de) rel_mng_2(r; rho; ds; st1; de; e; s; s'; a; tr) Prop
term_mng2 Def [[t]] e s s' a tr == iterate(statevar x- > s.x statevar x'- > s'.x funsymbol x- > e.x freevar x- > a trace(P)- > tr.P x(y)- > x(y) over t)
tproj Def tre.P == tre.trace | tre.proj(P)
Thm* d:Decl, tre:trace_env(d), P:Label. tre.P (d) List
trace_projection Def tr | P == filter(x.P(kind(x));tr)
Thm* d:Decl, tr:(d) List, P:(Label). tr | P (d) List
kind Def kind(a) == 1of(a)
Thm* d:Decl, a:(d). kind(a) Label
Thm* M:sm{i:l}(), a:M.action. kind(a) Label & kind(a) Pattern
rel_mentions Def rel_mentions(r;x) == i:. i < ||r.args|| & (x term_vars(r.args[i]))
Thm* r:rel(), x:Label. rel_mentions(r;x) Prop
l_member Def (x l) == i:. i < ||l|| & x = l[i] T
Thm* T:Type, x:T, l:T List. (x l) Prop
nat Def == {i:| 0i }
Thm* Type
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
lelt Def i j < k == ij & j < k
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
pred Def Fmla == Collection(rel())
Thm* Fmla{i} Type{i'}
record_pair Def {p} == {1of(p)}{2of(p)}
Thm* p:(DeclDecl). {p} Type
pre Def pre() == LabelLabelrel()
Thm* pre() Type
rel Def rel() == relname()(Term List)
Thm* rel() Type
sig Def sig() == (LabelSimpleType)(Label(SimpleType List))
Thm* sig() Type
sig_mng Def [[s]] rho == < op.[[s.fun(op)]] rho,R.[[s.rel(R)]] rho >
Thm* s:sig(), rho:Decl{i}. sig_mng{i:l}(s; rho) Decl{i}Decl{i'}
sm_action Def M.action == (M.da)
Thm* M:sm{i:l}(). M.action Type
sm_state Def M.state == {M.ds}
Thm* M:sm{i:l}(). M.state Type
sm_trans Def t.trans == 2of(2of(2of(t)))
Thm* M:sm{i:l}(). M.trans M.stateM.actionM.stateProp
trace_env Def trace_env(d) == ((d) List)(LabelLabel)
Thm* d:Decl. trace_env(d) Type
trace_env_proj Def t.proj == 2of(t)
Thm* d:Decl, t:trace_env(d). t.proj LabelLabel
value Def value(a) == 2of(a)
Thm* d:Decl, a:(d). value(a) d(kind(a))
frame_typ Def t.typ == 1of(2of(t))
Thm* t:frame(). t.typ SimpleType
frame_var Def t.var == 1of(t)
Thm* t:frame(). t.var Label
rel_subst2 Def rel_subst2(as;r) == mk_rel(r.name, map(t.term_subst2(as;t);r.args))
Thm* r:rel(), as:(LabelTerm) List. rel_subst2(as;r) rel()
term_subst2 Def term_subst2(as;t) == iterate(statevar v- > v statevar v'- > apply_alist(as;v;v') funsymbol f- > f freevar f- > f trace(P)- > trace(P) x(y)- > x y over t)
Thm* t:Term, as:(LabelTerm) List. term_subst2(as;t) Term
tvar Def l == tree_leaf(ts_var(l))
Thm* l:Label. l Term
mk_smt Def mk_smt(lbl, term, typ) == < lbl,term,typ >
Thm* lbl:Label, term:Term, typ:SimpleType. mk_smt(lbl, term, typ) smt()
frame_acts Def t.acts == 2of(2of(t))
Thm* t:frame(). t.acts Label List
lbls_member Def x ls == reduce(a,b. x = a b;false;ls)
Thm* x:Label, ls:Label List. x ls
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
bnot Def b == if b false else true fi
Thm* b:. b
eff Def eff() == LabelLabelSimpleTypesmt()
Thm* eff() Type
smt Def smt() == LabelTermSimpleType
Thm* smt() Type
frame Def frame() == LabelSimpleType(Label List)
Thm* frame() Type
closed_rel Def closed_rel(r) == rel_free_vars(r) = nil
Thm* r:rel(). closed_rel(r) Prop
term Def Term == Tree(ts())
Thm* Term Type
dec Def dec() == LabelSimpleType
Thm* dec() Type
relname Def relname() == SimpleType+Label
Thm* relname() Type
st Def SimpleType == Tree(Label+Unit)
Thm* SimpleType Type
record Def {d} == l:Labeldecl_type(d;l)
Thm* d:Decl. {d} Type
sigma Def (d) == l:Labeldecl_type(d;l)
Thm* d:Decl. (d) Type
ts Def ts() == Label+Label+Label+Label+Label
Thm* ts() Type
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
assert Def b == if b True else False fi
Thm* b:. b Prop
eff_smt Def t.smt == 2of(2of(2of(t)))
Thm* t:eff(). t.smt smt()
eff_kind Def t.kind == 1of(t)
Thm* t:eff(). t.kind Label
dec_mng Def [[d]] rho == Case(d) Case x : s = > x:[[s]] rho
Thm* rho:Decl, d:dec(). [[d]] rho Decl
dbase Def x:y(a) == if a = x y else Top fi
Thm* x:Label, y:Type. x:y Decl
apply_alist Def apply_alist(as;l;d) == 2of((first p as s.t. 1of(p) = l else < l,d > ))
Thm* T:Type, as:(LabelT) List, l:Label, d:T. apply_alist(as;l;d) T
term_mentions_guard Def term_mentions_guard(g;t) == term_iterate(x.false;x.false;x.false;x.false;x.x = g;x,y. x y;t)
Thm* t:Term, g:Label. term_mentions_guard(g;t)
st_eq Def st_eq(s1;s2) == Case(s1) Case a;b = > Case(s2) Case a';b' = > st_eq(a;a')st_eq(b;b') Default = > false Case tree_leaf(x) = > Case(s2) Case a';b' = > false Case tree_leaf(y) = > InjCase(x; x'. InjCase(y; y'. x' = y'; b. false); a. InjCase(y; y'. false; b. true)) Default = > false Default = > false (recursive)
Thm* s1,s2:SimpleType. st_eq(s1;s2)
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
rel_primed_vars Def rel_primed_vars(r) == reduce(t,vs. term_primed_vars(t) @ vs;nil;r.args)
Thm* r:rel(). rel_primed_vars(r) Label List
zip Def zip(as;bs) == Case of as; nil nil ; a.as' Case of bs; nil nil ; b.bs' [ < a,b > / zip(as';bs')] (recursive)
Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1T2) List
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
dec_typ Def t.typ == 2of(t)
Thm* t:dec(). t.typ SimpleType
dec_lbl Def t.lbl == 1of(t)
Thm* t:dec(). t.lbl Label
dall Def D(i) for i I(x) == i:I. D(i)(x)
Thm* I:Type, D:(IDecl). D(i) for i I Decl
col Def Collection(T) == TProp
Thm* T:Type{i'}. Collection{i}(T) Type{i'}
rel_mentions_trace Def rel_mentions_trace(r) == reduce(x,y. mentions_trace(x) y;false;r.args)
Thm* r:rel(). rel_mentions_trace(r)
ioa_init Def t.init == 1of(2of(2of(t)))
Thm* t:ioa{i:l}(). t.init Collection(rel())
Thm* t:ioa{i:l}(). t.init Fmla
pre_rel Def t.rel == 2of(2of(t))
Thm* t:pre(). t.rel rel()
ioa_pre Def t.pre == 1of(2of(2of(2of(t))))
Thm* t:ioa{i:l}(). t.pre Collection(pre())
smt_term Def t.term == 1of(2of(t))
Thm* t:smt(). t.term Term
smt_typ Def t.typ == 2of(2of(t))
Thm* t:smt(). t.typ SimpleType
rel_free_vars Def rel_free_vars(r) == reduce(t,vs. term_free_vars(t) @ vs;nil;r.args)
Thm* r:rel(). rel_free_vars(r) Label List
rel_args Def t.args == 2of(t)
Thm* t:rel(). t.args Term List
sig_rel Def t.rel == 2of(t)
Thm* t:sig(). t.rel Label(SimpleType List)
sm_ds Def t.ds == 1of(2of(t))
Thm* t:sm{i:l}(). t.ds Decl
eff_typ Def t.typ == 1of(2of(2of(t)))
Thm* t:eff(). t.typ SimpleType
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
smt_lbl Def t.lbl == 1of(t)
Thm* t:smt(). t.lbl Label
pre_kind Def t.kind == 1of(t)
Thm* t:pre(). t.kind Label
rel_name Def t.name == 1of(t)
Thm* t:rel(). t.name relname()
sig_fun Def t.fun == 1of(t)
Thm* t:sig(). t.fun LabelSimpleType
sm_da Def t.da == 1of(t)
Thm* t:sm{i:l}(). t.da Decl
trace_env_trace Def t.trace == 1of(t)
Thm* d:Decl, t:trace_env(d). t.trace (d) List
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
mentions_trace Def mentions_trace(t) == iterate(statevar x- > false statevar x'- > false funsymbol x- > false freevar x- > false trace(P)- > true x(y)- > x y over t)
Thm* t:Term. mentions_trace(t)
relname_mng Def [[rn]] rho e == Case(rn) Case eq(Q) = > x,y. x = y [[Q]] rho Case R = > e.R Default = > True
r_select Def r.l == r(l)
Thm* d:Decl, r:{d}, l:Label. r.l d(l)
st_list_mng Def [[l]] rho == reduce(s,m. [[s]] rhom;Prop;l)
Thm* l:SimpleType List, rho:Decl{i}. [[l]] rho{i} Type{i'}
st_mng Def [[s]] rho == t_iterate(st_lift(rho);x,y. xy;s)
Thm* rho:Decl, s:SimpleType. [[s]] rho Type
niltrace Def niltrace() == mk_trace_env(nil, P,k. false)
Thm* d:Decl. niltrace() trace_env(d)
mk_sm Def mk_sm(da, ds, init, trans) == < da,ds,init,trans >
Thm* da,ds:Decl, init:({ds}Prop), trans:({ds}(da){ds}Prop). mk_sm(da, ds, init, trans) sm{i:l}()
list_accum Def list_accum(x,a.f(x;a);y;l) == Case of l; nil y ; b.l' list_accum(x,a.f(x;a);f(y;b);l') (recursive)
mk_dec Def mk_dec(lbl, typ) == < lbl,typ >
Thm* lbl:Label, typ:SimpleType. mk_dec(lbl, typ) dec()
ts_var Def ts_var(x) == inl(x)
Thm* x:Label. ts_var(x) ts()
ttrace Def trace(l) == tree_leaf(ts_trace(l))
Thm* l:Label. trace(l) Term
tfvar Def l == tree_leaf(ts_fvar(l))
Thm* l:Label. l Term
topr Def f == tree_leaf(ts_op(f))
Thm* f:Label. f Term
tpvar Def l' == tree_leaf(ts_pvar(l))
Thm* l:Label. l' Term
typ Def t == tree_leaf(inl(t))
Thm* t:Label. t SimpleType
tree_leaf Def tree_leaf(x) == inl(x)
Thm* E,T:Type, x:E. tree_leaf(x) tree_con(E;T)
Thm* E:Type, x:E. tree_leaf(x) Tree(E)
bor Def p q == if p true else q fi
Thm* p,q:. (p q)
find Def (first x as s.t. P(x) else d) == Case of filter(x.P(x);as); nil d ; a.b a
Thm* T:Type, P:(T), as:T List, d:T. (first a as s.t. P(a) else d) T
filter Def filter(P;l) == reduce(a,v. if P(a) [a / v] else v fi;nil;l)
Thm* T:Type, P:(T), l:T List. filter(P;l) T List
reduce Def reduce(f;k;as) == Case of as; nil k ; a.as' f(a,reduce(f;k;as')) (recursive)
Thm* A,B:Type, f:(ABB), k:B, as:A List. reduce(f;k;as) B
term_primed_vars Def term_primed_vars(t) == iterate(statevar v- > nil statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t)
Thm* t:Term. term_primed_vars(t) Label List
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
term_vars Def term_vars(t) == iterate(statevar v- > [v] statevar v'- > [v] funsymbol f- > nil freevar f- > nil trace(P)- > nil x(y)- > x @ y over t)
Thm* t:Term. term_vars(t) Label List
term_iter Def iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a;b) over t) == term_iterate(x.v(x); x'.v'(x'); op.opr(op); f.fvar(f); tr.trace(tr); a,b. comb(a;b); t)
Thm* A:Type, v,v',opr,fvar,trace:(LabelA), comb:(AAA), t:Term. iterate(statevar x- > v(x) statevar x''- > v'(x') funsymbol op- > opr(op) freevar f- > fvar(f) trace(tr)- > trace(tr) a(b)- > comb(a,b) over t) A
term_free_vars Def term_free_vars(t) == term_iterate(f.nil;f.nil;f.nil;v.[v];P.nil;x,y. x @ y;t)
Thm* t:Term. term_free_vars(t) Label List
term_iterate Def term_iterate(v;p;op;f;tr;a;t) == t_iterate(x.ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(c)= > op(c)fvar(d)= > f(d)trace(P)= > tr(P)end_ts_case ;a;t)
Thm* A:Type, v,op,f,p,tr:(LabelA), a:(AAA), t:Term. term_iterate(v;p;op;f;tr;a;t) A
t_iterate Def t_iterate(l;n;t) == Case(t) Case x;y = > n(t_iterate(l;n;x),t_iterate(l;n;y)) Case tree_leaf(x) = > l(x) Default = > True (recursive)
Thm* E,A:Type, l:(EA), n:(AAA), t:Tree(E). t_iterate(l;n;t) A
ts_case Def ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(x)= > f(x)trace(P)= > t(P)end_ts_case == Case(x) Case ts_var(a) = > v(a) Case ts_pvar(b) = > p(b) Case ts_op(f) = > op(f) Case ts_fvar(x) = > f(x) Case ts_trace(P) = > t(P) Default = >
Thm* A:Type, v,op,f,p,t:(LabelA), x:ts(). ts_case(x)var(a)= > v(a)var'(b)= > p(b)opr(f)= > op(f)fvar(y)= > f(y)trace(P)= > t(P)end_ts_case A
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
tree Def Tree(E) == rec(T.tree_con(E;T))
Thm* E:Type. Tree(E) Type
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
mk_rel Def mk_rel(name, args) == < name,args >
Thm* name:relname(), args:Term List. mk_rel(name, args) rel()
case_mk_dec Def Case lbl : typ = > body(lbl;typ)(x,z) == x/x2,x1. body(x2;x1)
st_lift Def st_lift(rho)(x) == InjCase(x; x'. rho(x'); a. Top)
Thm* rho:(LabelType). st_lift(rho) (Label+Unit)Type
mk_trace_env Def mk_trace_env(trace, proj) == < trace,proj >
Thm* d:Decl, trace:(d) List, proj:(LabelLabel). mk_trace_env(trace, proj) trace_env(d)
decl_type Def decl_type(d;x) == d(x)
Thm* dec:Decl, x:Label. decl_type(dec;x) Type
case_relname_other Def Case x = > body(x) cont(x1,z) == (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x1])
case_relname_eq Def Case eq(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
col_singleton Def < x > (y) == y = x T
Thm* T:Type, x:T. < x > Collection(T)
case_ts_trace Def Case ts_trace(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_fvar Def Case ts_fvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_op Def Case ts_op(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
case_ts_pvar Def Case ts_pvar(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont(hd(x1),z))([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
tree_con Def tree_con(E;T) == E+(TT)
Thm* E,T:Type. tree_con(E;T) Type
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
tapp Def t1 t2 == tree_node( < t1, t2 > )
Thm* t1,t2:Term. t1 t2 Term
top Def Top == Void given Void
Thm* Top Type
case_tree_leaf Def Case tree_leaf(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))
case_node Def Case x;y = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. x2/x3,x2@0. body(x3;x2@0))
clbl Def $x == ptn_atom("$x")
lbl_pair Def lbl_pr( < x, y > ) == ptn_pr( < x,y > )
Thm* x,y:Pattern. lbl_pr( < x, y > ) Pattern
Thm* x,y:Label. lbl_pr( < x, y > ) Label
node Def tree_node( < x, y > ) == tree_node( < x,y > )
Thm* E:Type, x,y:Tree(E). tree_node( < x, y > ) Tree(E)
ts_trace Def ts_trace(x) == inr(inr(inr(inr(x))))
Thm* x:Label. ts_trace(x) ts()
ts_fvar Def ts_fvar(x) == inr(inr(inr(inl(x))))
Thm* x:Label. ts_fvar(x) ts()
ts_op Def ts_op(x) == inr(inr(inl(x)))
Thm* x:Label. ts_op(x) ts()
ts_pvar Def ts_pvar(x) == inr(inl(x))
Thm* x:Label. ts_pvar(x) ts()
ptn_atom Def ptn_atom(x) == inl(x)
Thm* T:Type, x:Atom. ptn_atom(x) ptn_con(T)
Thm* x:Atom. ptn_atom(x) Pattern
Thm* x:Atom. ptn_atom(x) Label
ptn_pr Def ptn_pr(x) == inr(inr(inr(x)))
Thm* T:Type, x:(TT). ptn_pr(x) ptn_con(T)
Thm* x,y:Pattern. ptn_pr( < x,y > ) Pattern
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
tree_node Def tree_node(x) == inr(x)
Thm* E,T:Type, x:(TT). tree_node(x) tree_con(E;T)
Thm* E:Type, x,y:Tree(E). tree_node( < x,y > ) Tree(E)
case_ts_var Def Case ts_var(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertunititvoidintnatural_numberaddsubtractint_eqless
less_thanatomtokenatom_equnioninlinr
decidesetisectisect
lambdaapplyfunctionrecursive_def_noticerecuniverseequal
membertoppropimpliesandorfalsetrueallexists
!abstraction

WhoCites Definitions mb automata 4 Sections GenAutomata Doc