(74steps total)
PrintForm
Definitions
Lemmas
mb
event
system
6
Sections
EventSystems
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At:
pre-init-rule
1
2
1
1.
i
: Id
2.
a
: Id
3.
T
: Type
4.
ds
:
x
:Id fp-> Type
5.
P
: State(
ds
)
T
Prop
6.
init
:
x
:Id fp->
ds
(
x
)?Void
7.
x
:Id.
x
dom(
ds
)
x
dom(
init
)
8.
w
: World
9. FairFifo
10. FairFifo
11.
l
:IdLnk,
tg
:Id.
11.
(
w
.M(
l
,
tg
))
r if eqof(IdDeq)(source(
l
),
i
)
11. (
w
.M(
l
,
tg
))
r if
(with ds:
ds
11. (
w
.M(
l
,
tg
))
r if (
init:
init
11. (
w
.M(
l
,
tg
))
r if
action
a
:
T
11. (
w
.M(
l
,
tg
))
r if a
precondition
a
(v) is
11. (
w
.M(
l
,
tg
))
r if a
P
)
11. (
w
.M(
l
,
tg
))
r
else fi.da(rcv(
l
;
tg
))
12. (eqof(IdDeq)(
i
,
i
)) ~ true
13.
a@0
:Id,
t
:
.
13.
t'
:
.
13.
t
t'
13.
&
isnull(a(
i
;
t'
)) & kind(a(
i
;
t'
)) = locl(
a@0
)
13. &
locl(
a@0
)
dom(1of(2of((with ds:
ds
13. &
locl(
a@0
)
dom(1of(2
init:
init
13. &
locl(
a@0
)
dom(1of(
action
a
:
T
13. &
locl(
a@0
)
dom(1of(a
precondition
a
(v) is
13. &
locl(
a@0
)
dom(1of(a
P
))))
13. &
P@0
!= 1of(2of(2of(2of((with ds:
ds
13. &
P@0
!= 1of(2
init:
init
13. &
P@0
!= 1of(
action
a
:
T
13. &
P@0
!= 1of(a
precondition
a
(v) is
13. &
P@0
!= 1of(a
P
)))))(
a@0
) ==>
v
:1of(2of((with ds:
ds
13. &
P@0
!= 1of(a
P
)))))(
a@0
) ==>
v
:1of(2
init:
init
13. &
P@0
!= 1of(a
P
)))))(
a@0
) ==>
v
:1of(
action
a
:
T
13. &
P@0
!= 1of(a
P
)))))(
a@0
) ==>
v
:1of(a
precondition
a
(v) is
13. &
P@0
!= 1of(a
P
)))))(
a@0
) ==>
v
:1of(a
P
)))(locl(
a@0
))?Top.
13. &
P@0
((
x
.s(
i
;
t'
).
x
),
v
)
14.
t
:
.
14.
isnull(a(
i
;
t
))
14.
14.
(islocal(kind(a(
i
;
t
)))
14. (
14. (
deq-member(IdDeq;act(kind(a(
i
;
t
)));1of(1of(2of(2of(2of((with ds:
ds
14. (deq-member(IdDeq;act(kind(a(
i
;
t
)));1of(1of(2
init:
init
14. (deq-member(IdDeq;act(kind(a(
i
;
t
)));1of(1of(
action
a
:
T
14. (deq-member(IdDeq;act(kind(a(
i
;
t
)));1of(1of(a
precondition
a
(v) is
14. (deq-member(IdDeq;act(kind(a(
i
;
t
)));1of(1of(a
P
)))))))
14. (
14. (
2of(1of(2of(2of(2of((with ds:
ds
14. (2of(1of(2
init:
init
14. (2of(1of(
action
a
:
T
14. (2of(1of(a
precondition
a
(v) is
14. (2of(1of(a
P
))))))
14. (
(act(kind(a(
i
;
t
)))
14. (
,
x
.s(
i
;
t
).
x
14. (
,val(a(
i
;
t
))))
14.
& (
x
:Id.
14. & (
deq-member(product-deq(Knd;Id;KindDeq;IdDeq);<kind(a(
i
;
t
))
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);
,
x
>;1of(1of(
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;
2of(2of(2of(2of(
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;
(with ds:
ds
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;(
init:
init
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;
action
a
:
T
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;a
precondition
a
(v) is
14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,
x
>;a
P
))))))))
14. & (
14. & (
s(
i
;
t
+1).
x
14. & (
=
14. & (
2of(1of(2of(2of(2of(2of((with ds:
ds
14. & (2of(1of(2
init:
init
14. & (2of(1of(
action
a
:
T
14. & (2of(1of(a
precondition
a
(v) is
14. & (2of(1of(a
P
)))))))
14. & (
(<kind(a(
i
;
t
)),
x
>
14. & (
,
x
.s(
i
;
t
).
x
14. & (
,val(a(
i
;
t
))))
14.
& (
l
:IdLnk.
14. & (
deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);<kind(a(
i
;
t
))
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);
,
l
>;1of(1of(
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;
2of(2of(2of(2of(
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;
2of((with ds:
ds
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;2
init:
init
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;
action
a
:
T
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;a
precondition
a
(v) is
14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,
l
>;a
P
)))))))))
14. & (
14. & (
withlnk(
l
;m(
i
;
t
))
14. & (
=
14. & (
if source(
l
) =
i
14. & (if
concat(map(
tgf
.map(
x
.
14. & (if
<1of(
tgf
),
x
>;2of(
tgf
)
14. & (if <1of(
tgf
),
x
>;
((
x
.s(
i
;
t
).
x
)
14. & (if <1of(
tgf
),
x
>;
,val(a(
i
;
t
))));2of(1of(2of(2of(2of(2of(2of((with ds:
ds
14. & (if <1of(
tgf
),
x
>;,val(a(
i
;
t
))));2of(1of(2
init:
init
14. & (if <1of(
tgf
),
x
>;,val(a(
i
;
t
))));2of(1of(
action
a
:
T
14. & (if <1of(
tgf
),
x
>;,val(a(
i
;
t
))));2of(1of(a
precondition
a
(v) is
14. & (if <1of(
tgf
),
x
>;,val(a(
i
;
t
))));2of(1of(a
P
))))))))
14. & (if <1of(
tgf
),
x
>;,val(a(
i
;
t
))));
(<kind(a(
i
;
t
)),
l
>)))
14. & (
else nil fi)
14.
& (
x
:Id.
14. & (
(deq-member(IdDeq;
x
;1of(1of(2of(2of(2of(2of(2of(2of((with ds:
ds
14. & (
(deq-member(IdDeq;
x
;1of(1of(2
init:
init
14. & (
(deq-member(IdDeq;
x
;1of(1of(
action
a
:
T
14. & (
(deq-member(IdDeq;
x
;1of(1of(a
precondition
a
(v) is
14. & (
(deq-member(IdDeq;
x
;1of(1of(a
P
))))))))))
14. & (
(
14. & (
(
deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(2of(2of(2of(2of(2of(2of(
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(
(with ds:
ds
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of((
init:
init
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(
action
a
:
T
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(a
precondition
a
(v) is
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(a
P
)))))))))
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));
(
x
)))
14. & (
14. & (
s(
i
;
t
).
x
= s(
i
;
t
+1).
x
)
14.
& (
l
:IdLnk,
tg
:Id.
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);<
l
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);
,
tg
>;1of(1of(
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;
2of(2of(2of(2of(
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;
2of(2of(2of(
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;
(with ds:
ds
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;(
init:
init
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;
action
a
:
T
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;a
precondition
a
(v) is
14. & (
(deq-member(product-deq(IdLnk;Id;IdLnkDeq;IdDeq);,
tg
>;a
P
)))))))))))
14. & (
(
14. & (
(
deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(2of(2of(2of(2of(2of(2of(2of(
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(
(with ds:
ds
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of((
init:
init
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(
action
a
:
T
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(a
precondition
a
(v) is
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));2of(1of(a
P
))))))))))
14. & (
(deq-member(KindDeq;kind(a(
i
;
t
));
(<
l
,
tg
>)))
14. & (
14. & (
w-tagged(
tg
; onlnk(
l
;m(
i
;
t
))) = nil)
15.
x
:Id.
15.
deq-member(IdDeq;
x
;1of(1of(2of(2of((with ds:
ds
15. deq-member(IdDeq;
x
;1of(1of(2
init:
init
15. deq-member(IdDeq;
x
;1of(1of(
action
a
:
T
15. deq-member(IdDeq;
x
;1of(1of(a
precondition
a
(v) is
15. deq-member(IdDeq;
x
;1of(1of(a
P
))))))
15.
15.
s(
i
;0).
x
15.
=
15.
2of(1of(2of(2of((with ds:
ds
15. 2of(1of(2
init:
init
15. 2of(1of(
action
a
:
T
15. 2of(1of(a
precondition
a
(v) is
15. 2of(1of(a
P
)))))
15.
(
x
)
16.
a@0
:Action(
i
).
16.
isnull(
a@0
)
16.
16.
(valtype(
i
;
a@0
)
r 1of(2of((with ds:
ds
16. (valtype(
i
;
a@0
)
r 1of(2
init:
init
16. (valtype(
i
;
a@0
)
r 1of(
action
a
:
T
16. (valtype(
i
;
a@0
)
r 1of(a
precondition
a
(v) is
16. (valtype(
i
;
a@0
)
r 1of(a
P
)))(kind(
a@0
))?Top)
17.
x
:Id.
17.
vartype(
i
;
x
)
r if deq-member(IdDeq;
x
;1of(1of((with ds:
ds
17. vartype(
i
;
x
)
r if deq-member(IdDeq;
x
;1
init:
init
17. vartype(
i
;
x
)
r if deq-member(IdDeq;
x
;
action
a
:
T
17. vartype(
i
;
x
)
r if deq-member(IdDeq;
x
;a
precondition
a
(v) is
17. vartype(
i
;
x
)
r if deq-member(IdDeq;
x
;a
P
))))
17. vartype(
i
;
x
)
r if
2of(1of((with ds:
ds
17. vartype(
i
;
x
)
r if 2of(1
init:
init
17. vartype(
i
;
x
)
r if 2of(
action
a
:
T
17. vartype(
i
;
x
)
r if 2of(a
precondition
a
(v) is
17. vartype(
i
;
x
)
r if 2of(a
P
)))
17. vartype(
i
;
x
)
r if
(
x
)
17. vartype(
i
;
x
)
r
else Top fi
(
v
:
T
.
P
((
x
.
init
(
x
)?
),
v
))
(
e
:E. loc(
e
) =
i
Id)
By:
Assert ((
x
.
init
(
x
)?
)
State(
ds
))
Generated subgoals:
1
(
x
.
init
(
x
)?
)
State(
ds
)
7
steps
2
18. (
x
.
init
(
x
)?
)
State(
ds
)
(
v
:
T
.
P
((
x
.
init
(
x
)?
),
v
))
(
e
:E. loc(
e
) =
i
Id)
56
steps
About:
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
(74steps total)
PrintForm
Definitions
Lemmas
mb
event
system
6
Sections
EventSystems
Doc