| By: |
let let let let let let let let let RepeatFor 3 (Analyze 0 THENA Complete Auto) THEN AssertBY ((eqof(IdDeq)(i,i)) ~ true (BackThru Thm* THEN ES_Reduce THEN PW_Reduce -2 THEN AllHyps ( (InstHyp [i] h THENA Complete Auto THEN Subst ((eqof(IdDeq)(i,i)) ~ true (THENL ([Trivial;Thin h THEN Reduce -1 THEN Repeat (Unfolds maops -1 THEN Reduce -1)]) |
| 1 |
9. FairFifo 10. FairFifo 11. 11. (w.M(l,tg)) 11. (w.M(l,tg)) 11. (w.M(l,tg)) 11. (w.M(l,tg)) 11. (w.M(l,tg)) 11. (w.M(l,tg)) 11. (w.M(l,tg)) 12. (eqof(IdDeq)(i,i)) ~ true 13. 13. 13. t 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 13. & 14. 14. 14. 14. (islocal(kind(a(i;t))) 14. ( 14. (deq-member(IdDeq;act(kind(a(i;t)));1of(1of(2of(2of(2of((with ds: ds 14. (deq-member(IdDeq;act(kind(a(i;t)));1of(1of(2init: init 14. (deq-member(IdDeq;act(kind(a(i;t)));1of(1of(action a:T 14. (deq-member(IdDeq;act(kind(a(i;t)));1of(1of(aprecondition a(v) is 14. (deq-member(IdDeq;act(kind(a(i;t)));1of(1of(aP))))))) 14. ( 14. (2of(1of(2of(2of(2of((with ds: ds 14. (2of(1of(2init: init 14. (2of(1of(action a:T 14. (2of(1of(aprecondition a(v) is 14. (2of(1of(aP)))))) 14. ((act(kind(a(i;t))) 14. (, 14. (,val(a(i;t)))) 14. & ( 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);<kind(a(i;t)) 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;1of(1of( 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;2of(2of(2of(2of( 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;(with ds: ds 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;(init: init 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;action a:T 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;aprecondition a(v) is 14. & (deq-member(product-deq(Knd;Id;KindDeq;IdDeq);,x>;aP)))))))) 14. & ( 14. & (s(i;t+1).x 14. & (= 14. & (2of(1of(2of(2of(2of(2of((with ds: ds 14. & (2of(1of(2init: init 14. & (2of(1of(action a:T 14. & (2of(1of(aprecondition a(v) is 14. & (2of(1of(aP))))))) 14. & ((<kind(a(i;t)),x> 14. & (, 14. & (,val(a(i;t))) 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);<kind(a(i;t)) 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;1of(1of( 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;2of(2of(2of(2of( 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;2of((with ds: ds 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;2init: init 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;action a:T 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;aprecondition a(v) is 14. & (deq-member(product-deq(Knd;IdLnk;KindDeq;IdLnkDeq);,l>;aP))))))))) 14. & ( 14. & (withlnk(l;m(i;t)) 14. & (= 14. & (if source(l) = i 14. & (if concat(map( 14. & (if <1of(tgf),x>;2of(tgf) 14. & (if <1of(tgf),x>;(( 14. & (if <1of(tgf),x>;,val(a(i;t))));2of(1of(2of(2of(2of(2of(2of((with ds: ds 14. & (if <1of(tgf),x>;,val(a(i;t))));2of(1of(2init: init 14. & (if <1of(tgf),x>;,val(a(i;t))));2of(1of(action a:T 14. & (if <1of(tgf),x>;,val(a(i;t))));2of(1of(aprecondition a(v) is 14. & (if <1of(tgf),x>;,val(a(i;t))));2of(1of(aP)))))))) 14. & (if <1of(tgf),x>;,val(a(i;t))));(<kind(a(i;t)),l>))) 14. & (else nil fi 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & (s(i;t).x 14. & (= 14. & (s(i;t+1).x 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & ( 14. & (w-tagged(tg; onlnk(l;m(i;t))) = nil 15. 15. deq-member(IdDeq;x;1of(1of(2of(2of((with ds: ds 15. deq-member(IdDeq;x;1of(1of(2init: init 15. deq-member(IdDeq;x;1of(1of(action a:T 15. deq-member(IdDeq;x;1of(1of(aprecondition a(v) is 15. deq-member(IdDeq;x;1of(1of(aP)))))) 15. 15. s(i;0).x 15. = 15. 2of(1of(2of(2of((with ds: ds 15. 2of(1of(2init: init 15. 2of(1of(action a:T 15. 2of(1of(aprecondition a(v) is 15. 2of(1of(aP))))) 15. (x) 15. 15. 15. 15. 15. 15. 15. 16. 16. 16. 16. (valtype(i;a@0) 16. (valtype(i;a@0) 16. (valtype(i;a@0) 16. (valtype(i;a@0) 16. (valtype(i;a@0) 17. 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) 17. vartype(i;x) | 64 steps |
About: