Thm* E:EventStruct, tr:|E| List, ls: ||tr||.
is-send(E)(tr[ls]) 
( j: ||tr||. ls < j  is-send(E)(tr[j])) 
( i,j: ||tr||. i j  is-send(E)(tr[j])  (i (switchR(tr)^*) ls)  (j (switchR(tr)^*) ls)) | [switch_inv_rel_closure_lemma1] |
Thm* E:EventStruct, P:((Label (|E| List)) Prop).
( f,g:(Label (|E| List)). ( p:Label. g(p) f(p))  P(f)  P(g)) 
( f,g:(Label (|E| List)).
( a:|E|. p:Label. g(p) = filter( b. (b =msg=(E) a);f(p)))  P(f)  P(g))

( f,g,h:(Label (|E| List)).
( p,q:Label. ( x f(p).( y g(q). (x =msg=(E) y)))) 
( p:Label. h(p) = ((f(p)) @ (g(p))))  P(f)  P(g)  P(h))

switchable0(E)(local_deliver_property(E;P)) | [local_deliver_switchable] |
Thm* E:TaggedEventStruct, x:|E| List, i: (||x||-1).
switch_inv(E)(x) 
is-send(E)(x[(i+1)]) 
is-send(E)(x[i]) loc(E)(x[i]) = loc(E)(x[(i+1)])  switch_inv(E)(swap(x;i;i+1)) | [switch_inv_swap] |
Thm* E:EventStruct, a,b:|E|, tr:|E| List.
a somewhere delivered before b

( k: ||tr||.
a delivered at time k 
( k': ||tr||. k' < k & b delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k]))) | [not_delivered_before_somewhere] |
Thm* E:EventStruct, L:|E| List.
L = nil  Causal(E)(L)  ( i: ||L||. is-send(E)(L[i])) | [P_causal_non_nil] |
Thm* E:EventStruct, tr:|E| List.
No-dup-deliver(E)(tr)

( x,y:|E|.
is-send(E)(x) 
is-send(E)(y)  (y =msg=(E) x)  loc(E)(x) = loc(E)(y)  sublist(|E|;[x; y];tr)) | [P_no_dup_iff] |
Thm* msg:(A A  ), L1,L2:A List.
( a,b:A. (a L1)  (b L2)  msg(a,b))  (L1 -msg(a,b) L2) = L1 | [remove_msgs_disjoint] |
Def switch_inv(E)(tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
tr[j] delivered at time k 
( k': ||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k])) | [switch_inv] |
Def asyncR(E)
== swap adjacent[ loc(E)(x) = loc(E)(y)
&  (is-send(E)(x)) &  (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))] | [R_async] |
Def delayableR(E)
== swap adjacent[ (x =msg=(E) y)
&  (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) &  (is-send(E)(y))] | [R_delayable] |
Def AD-normal(E)(tr)
== i: (||tr||-1).
( (is-send(E)(tr[i]))   (is-send(E)(tr[(i+1)]))  (tr[i] =msg=(E) tr[(i+1)]))
& (( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& tr[x] delivered at time i+1
& tr[y] delivered at time i)

loc(E)(tr[i]) = loc(E)(tr[(i+1)])) | [switch_normal] |
Def R(tg) == swap adjacent[ tg(x) = tg(y) Label]^* | [tag_rel] |
Def Macro
x R_del(E) y
==  (x =msg=(E) y)
& is-deliver(E)(x) & (is-send(E)(y)) (is-send(E)(x)) & is-deliver(E)(y) | [R_del] |
Def composableR(E)(L_1,L_2,L)
== ( x L_1.( y L_2. (x =msg=(E) y))) & L = (L_1 @ L_2) |E| List | [R_composable] |
Def R_ad_normal(tr)(a,b)
== ( (is-send(E)(a))   (is-send(E)(b))  (a =msg=(E) b))
& ( (is-send(E)(a)) 
 (is-send(E)(b)) 
( x,y: ||tr||.
x < y
& (is-send(E)(tr[x]))
& (is-send(E)(tr[y]))
& (tr[x] =msg=(E) b)
& (tr[y] =msg=(E) a))

loc(E)(a) = loc(E)(b)) | [R_ad_normal] |
Def single-tag-decomposable(E)(L)
== L = nil |E| List 
( L_1,L_2:Trace(E).
L = (L_1 @ L_2) |E| List
& L_2 = nil |E| List
& ( x L_1.( y L_2. (x =msg=(E) y)))
& ( m:Label. ( x L_2.tag(E)(x) = m))) | [single_tag_decomposable] |
Def No-dup-deliver(E)(tr)
== i,j: ||tr||.
 (is-send(E)(tr[i])) 
 (is-send(E)(tr[j]))  (tr[j] =msg=(E) tr[i])  loc(E)(tr[i]) = loc(E)(tr[j])  i = j | [P_no_dup] |
Def x delivered at time k == (x =msg=(E) tr[k]) &  (is-send(E)(tr[k])) | [delivered_at] |
Def switch_inv(E; tr)
== i,j,k: ||tr||.
i < j 
(is-send(E)(tr[i])) 
(is-send(E)(tr[j])) 
tag(E)(tr[i]) = tag(E)(tr[j]) 
(tr[j] =msg=(E) tr[k]) 
 (is-send(E)(tr[k])) 
( k': ||tr||.
k' < k & loc(E)(tr[k']) = loc(E)(tr[k]) & (tr[i] =msg=(E) tr[k']) &  (is-send(E)(tr[k']))) | [switch_inv2001_03_15_DASH_PM_DASH_12_53_21] |