WhoCites Definitions mb hybrid Sections GenAutomata Doc

Who Cites full switch inv?
full_switch_invDef full_switch_inv(E;A;evt;tg;tr_u;tr_l) == tr_m:A List. (tr_l R(tg) tr_m) & (map(evt;tr_m) layerR(E) tr_u) & switch_inv( < A,evt,tg > (E))(tr_m)
Thm* E:EventStruct, A:Type, f:(A|E|), t:(ALabel), tr_u:|E| List, tr_l:A List. full_switch_inv(E;A;f;t;tr_u;tr_l) Prop
induced_tagged_event_str Def < A,evt,tg > (E) == < A,MS(E),msg(E) o evt,loc(E) o evt,is-send(E) o evt,tg, >
Thm* E:EventStruct, A:Type, f:(A|E|), t:(ALabel). < A,f,t > (E) TaggedEventStruct
switch_inv Def switch_inv(E)(tr) == i,j,k:||tr||. i < j (is-send(E)(tr[i])) (is-send(E)(tr[j])) tag(E)(tr[i]) = tag(E)(tr[j]) tr[j] delivered at time k (k':||tr||. k' < k & tr[i] delivered at time k' & loc(E)(tr[k']) = loc(E)(tr[k]))
Thm* E:TaggedEventStruct. switch_inv(E) (|E| List)Prop
map Def map(f;as) == Case of as; nil nil ; a.as' [(f(a)) / map(f;as')] (recursive)
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
Thm* A,B:Type, f:(AB), l:A List. map(f;l) B List
layer_rel Def layerR(E) == ((asyncR(E) delayableR(E)) send-enabledR(E))^*
Thm* E:EventStruct. layerR(E) (|E| List)(|E| List)Prop
tag_rel Def R(tg) == swap adjacent[tg(x) = tg(y) Label]^*
Thm* A:Type, tg:(ALabel). R(tg) (A List)(A List)Prop
delivered_at Def x delivered at time k == (x =msg=(E) tr[k]) & (is-send(E)(tr[k]))
Thm* E:EventStruct, tr:|E| List, x:|E|, k:||tr||. x delivered at time k Prop
R_send_enabled Def send-enabledR(E)(L_1,L_2) == x:|E|. (is-send(E)(x)) & L_2 = (L_1 @ [x])
Thm* E:EventStruct. send-enabledR(E) (|E| List)(|E| List)Prop
R_delayable Def delayableR(E) == swap adjacent[(x =msg=(E) y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))]
Thm* E:EventStruct. delayableR(E) (|E| List)(|E| List)Prop
R_async Def asyncR(E) == swap adjacent[loc(E)(x) = loc(E)(y) & (is-send(E)(x)) & (is-send(E)(y)) (is-send(E)(x)) & (is-send(E)(y))]
Thm* E:EventStruct. asyncR(E) (|E| List)(|E| List)Prop
event_is_snd Def is-send(E) == 1of(2of(2of(2of(2of(E)))))
Thm* E:EventStruct. is-send(E) |E|
compose Def (f o g)(x) == f(g(x))
Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC
event_loc Def loc(E) == 1of(2of(2of(2of(E))))
Thm* E:EventStruct. loc(E) |E|Label
event_msg_eq Def =msg=(E)(e_1,e_2) == (msg(E)(e_1)) =(MS(E)) (msg(E)(e_2))
Thm* E:EventStruct. =msg=(E) |E||E|
event_msg Def msg(E) == 1of(2of(2of(E)))
Thm* E:EventStruct. msg(E) |E||MS(E)|
event_msg_str Def MS(E) == 1of(2of(E))
Thm* E:EventStruct. MS(E) MessageStruct
swap_adjacent Def swap adjacent[P(x;y)](L1,L2) == i:(||L1||-1). P(L1[i];L1[(i+1)]) & L2 = swap(L1;i;i+1) A List
Thm* A:Type, P:(AAProp). swap adjacent[P(x,y)] (A List)(A List)Prop
swap Def swap(L;i;j) == (L o (i, j))
Thm* T:Type, L:T List, i,j:||L||. swap(L;i;j) T List
permute_list Def (L o f) == mklist(||L||;i.L[(f(i))])
Thm* T:Type, L:T List, f:(||L||||L||). (L o f) T List
select Def l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n n < ||l|| l[n] A
lbl Def Label == {p:Pattern| ground_ptn(p) }
Thm* Label Type
length Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive)
Thm* A:Type, l:A List. ||l||
Thm* ||nil||
int_seg Def {i..j} == {k:| i k < j }
Thm* m,n:. {m..n} Type
event_tag Def tag(E) == 1of(2of(2of(2of(2of(2of(E))))))
Thm* E:TaggedEventStruct. tag(E) |E|Label
rel_star Def (R^*)(x,y) == n:. x R^n y
Thm* T:Type, R:(TTProp). (R^*) TTProp
lelt Def i j < k == ij & j < k
nat Def == {i:| 0i }
Thm* Type
le Def AB == B < A
Thm* i,j:. (ij) Prop
not Def A == A False
Thm* A:Prop. (A) Prop
assert Def b == if b True else False fi
Thm* b:. b Prop
rel_or Def (R1 R2)(x,y) == (x R1 y) (x R2 y)
Thm* T:Type, R1,R2:(TTProp). (R1 R2) TTProp
carrier Def |S| == 1of(S)
Thm* S:Structure. |S| Type
msg_eq Def =(M)(m_1,m_2) == ((content(M)(m_1)) =(cEQ(M)) (content(M)(m_2)))sender(M)(m_1) = sender(M)(m_2) (uid(M)(m_1)=uid(M)(m_2))
Thm* M:MessageStruct. =(M) |M||M|
msg_id Def uid(MS) == 1of(2of(2of(2of(2of(MS)))))
Thm* M:MessageStruct. uid(M) |M|
msg_sender Def sender(MS) == 1of(2of(2of(2of(MS))))
Thm* M:MessageStruct. sender(M) |M|Label
msg_content Def content(MS) == 1of(2of(2of(MS)))
Thm* M:MessageStruct. content(M) |M||cEQ(M)|
msg_content_eq Def cEQ(MS) == 1of(2of(MS))
Thm* M:MessageStruct. cEQ(M) DecidableEquiv
eq_dequiv Def =(DE) == 1of(2of(DE))
Thm* E:DecidableEquiv. =(E) |E||E|
pi2 Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p) B(1of(p))
pi1 Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p) A
nth_tl Def nth_tl(n;as) == if n0 as else nth_tl(n-1;tl(as)) fi (recursive)
Thm* A:Type, as:A List, i:. nth_tl(i;as) A List
ground_ptn Def ground_ptn(p) == Case(p) Case ptn_var(v) = > false Case ptn_pr( < x, y > ) = > ground_ptn(x)ground_ptn(y) Default = > true (recursive)
Thm* p:Pattern. ground_ptn(p)
eq_lbl Def l1 = l2 == Case(l1) Case ptn_atom(x) = > Case(l2) Case ptn_atom(y) = > x=yAtom Default = > false Case ptn_int(x) = > Case(l2) Case ptn_int(y) = > x=y Default = > false Case ptn_var(x) = > Case(l2) Case ptn_var(y) = > x=yAtom Default = > false Case ptn_pr( < x, y > ) = > Case(l2) Case ptn_pr( < u, v > ) = > x = uy = v Default = > false Default = > false (recursive)
Thm* l1,l2:Pattern. l1 = l2
case_ptn_var Def Case ptn_var(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
case_ptn_int Def Case ptn_int(x) = > body(x) cont(x1,z) == (x1.inr(x2) = > (x1.inl(x2) = > body(hd([x2 / tl(x1)])) cont(hd(x1),z))([x2 / tl(x1)]) cont (hd(x1) ,z)) ([x1])
hd Def hd(l) == Case of l; nil "?" ; h.t h
Thm* A:Type, l:A List. ||l||1 hd(l) A
Thm* A:Type, l:A List. hd(l) A
ptn Def Pattern == rec(T.ptn_con(T))
Thm* Pattern Type
mklist Def mklist(n;f) == primrec(n;nil;i,l. l @ [(f(i))])
Thm* T:Type, n:, f:(nT). mklist(n;f) T List
append Def as @ bs == Case of as; nil bs ; a.as' [a / (as' @ bs)] (recursive)
Thm* T:Type, as,bs:T List. (as @ bs) T List
rel_exp Def R^n == if n=0 x,y. x = y T else x,y. z:T. (x R z) & (z R^n-1 y) fi (recursive)
Thm* n:, T:Type, R:(TTProp). R^n TTProp
tl Def tl(l) == Case of l; nil nil ; h.t t
Thm* A:Type, l:A List. tl(l) A List
le_int Def ij == j < i
Thm* i,j:. (ij)
case_default Def Default = > body(value,value) == body
band Def pq == if p q else false fi
Thm* p,q:. (pq)
case_lbl_pair Def Case ptn_pr( < x, y > ) = > body(x;y) cont(x1,z) == InjCase(x1; _. cont(z,z); x2. InjCase(x2; _. cont(z,z); x2@0. InjCase(x2@0; _. cont(z,z); x2@1. x2@1/x3,x2@2. body(x3;x2@2))))
case Def Case(value) body == body(value,value)
ptn_con Def ptn_con(T) == Atom++Atom+(TT)
Thm* T:Type. ptn_con(T) Type
flip Def (i, j)(x) == if x=ij ;x=ji else x fi
Thm* k:, i,j:k. (i, j) kk
primrec Def primrec(n;b;c) == if n=0 b else c(n-1,primrec(n-1;b;c)) fi (recursive)
Thm* T:Type, n:, b:T, c:(nTT). primrec(n;b;c) T
eq_int Def i=j == if i=j true ; false fi
Thm* i,j:. (i=j)
lt_int Def i < j == if i < j true ; false fi
Thm* i,j:. (i < j)
bnot Def b == if b false else true fi
Thm* b:. b
case_inl Def inl(x) = > body(x) cont(value,contvalue) == InjCase(value; x. body(x); _. cont(contvalue,contvalue))
case_inr Def inr(x) = > body(x) cont(value,contvalue) == InjCase(value; _. cont(contvalue,contvalue); x. body(x))
eq_atom Def x=yAtom == if x=yAtomtrue; false fi
Thm* x,y:Atom. x=yAtom
case_ptn_atom Def Case ptn_atom(x) = > body(x) cont(x1,z) == InjCase(x1; x2. body(x2); _. cont(z,z))

Syntax:full_switch_inv(E;A;evt;tg;tr_u;tr_l) has structure: full_switch_inv(E; A; evt; tg; tr_u; tr_l)

About:
pairspreadspreadspreadproductproductlistconsconsnil
list_indboolbfalsebtrueifthenelse
assertitintnatural_numberaddsubtractint_eqlessless_thanatom
tokenatom_equniondecide
setlambdaapplyfunctionrecursive_def_noticerec
universeequalmemberpropimpliesandorfalsetrueall
exists!abstraction

WhoCites Definitions mb hybrid Sections GenAutomata Doc