(32steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc

At: strong switch inv decomposable 1 2 1 1 2 2

1. E: TaggedEventStruct
2. tr: |E| List
3. Causal(E)(tr)
4. AD-normal(E)(tr)
5. No-dup-deliver(E)(tr)
6. tr = nil
7. ls: ||tr||
8. is-send(E)(tr[ls])
9. j:||tr||. ls < j is-send(E)(tr[j])
10. i:||tr||. (i (switchR(tr)^*) ls) is-send(E)(tr[i])
11. EquivRel(|E|)(_1 =msg=(E) _2)
12. i,j:||tr||. ij is-send(E)(tr[j]) (i (switchR(tr)^*) ls) (j (switchR(tr)^*) ls)
13. d:
14. 0 < d
15. i,j:||tr||. d-1 = j-i (i (switchR(tr)^*) ls) ij (k:||tr||. (k (switchR(tr)^*) ls) & (tr[k] =msg=(E) tr[j]))
16. i: ||tr||
17. j: ||tr||
18. d = j-i
19. i (switchR(tr)^*) ls
20. ij
21. is-send(E)(tr[i])
22. is-send(E)(tr[j])

k:||tr||. (k (switchR(tr)^*) ls) & (tr[k] =msg=(E) tr[j])

By: AssertBY (ij-1) Auto

Generated subgoal:

123. ij-1
k:||tr||. (k (switchR(tr)^*) ls) & (tr[k] =msg=(E) tr[j])


About:
listnilassertintnatural_numbersubtractless_thanapply
equalimpliesandallexists

(32steps) PrintForm Definitions Lemmas mb hybrid Sections GenAutomata Doc