Thm* no_repeats(T;nil) | [no_repeats_nil] |
Thm* l:T List, x,y,z:T.
Thm* no_repeats(T;l)  x before y l  y before z l  x before z l | [l_before_transitivity] |
Thm* L1,L2,L:T List, x:T.
Thm* no_repeats(T;L)  L1 @ [x] L  [x / L2] L  L1 @ [x / L2] L | [append_overlapping_sublists] |
Thm* l:T List, x:T. no_repeats(T;[x / l])  no_repeats(T;l) & (x l) | [no_repeats_cons] |
Thm* l:T List. no_repeats(T;l)  ( x,y:T. x before y l  x = y) | [no_repeats_iff] |
Thm* P:(T  ), as:T List, d:T.
Thm* ((first a as s.t. P(a) else d) as)
Thm* (first a as s.t. P(a) else d) = d | [find_property] |
Thm* as:(T1 T2) List. zip(1of(unzip(as));2of(unzip(as))) = as | [zip_unzip] |
Thm* as:T1 List, bs:T2 List. ||as|| = ||bs||  unzip(zip(as;bs)) = <as,bs> | [unzip_zip] |
Thm* as:T1 List, bs:T2 List. ||as|| = ||bs||  ||zip(as;bs)|| = ||as||  | [length_zip] |
Thm* as:T1 List, bs:T2 List, i: .
Thm* i<||zip(as;bs)||  zip(as;bs)[i] = <as[i],bs[i]> | [select_zip] |
Thm* as:T1 List, bs:T2 List. ||zip(as;bs)|| ||as|| & ||zip(as;bs)|| ||bs|| | [zip_length] |
Thm* T1,T2:Type, as:T1 List, bs:T2 List. zip(as;bs) (T1 T2) List | [zip_wf] |
Thm* T,T':Type, l:T List, y:T', f:(T' T T'). list_accum(x,a.f(x,a);y;l) T' | [list_accum_wf] |
Thm* L_1,L_2:T List. L_1 L_2  L_1 L_2 | [iseg_is_sublist] |
Thm* l1,l2:T List. l1 l2  ||l1|| ||l2|| | [iseg_length] |
Thm* P:(T  ), L2,L1:T List. L1 L2  filter(P;L1) filter(P;L2) | [filter_iseg] |
Thm* L:T List. L nil  null(L) | [iseg_nil] |
Thm* l1,l2:T List, x:T. l1 l2  (x l1)  (x l2) | [iseg_member] |
Thm* l1,l2:T List. l1 l2  ||l1|| ||l2|| & ( i: . i<||l1||  l1[i] = l2[i]) | [iseg_select] |
Thm* l:T List. nil l | [nil_iseg] |
Thm* l:T List. l l | [iseg_weakening] |
Thm* l1,l2,l3:T List. l2 l3  l1 l2  l1 l3 | [iseg_transitivity2] |
Thm* L1,L2:T List. L1 L2  ( n: (||L2||+1). L1 = firstn(n;L2)) | [firstn_is_iseg] |
Thm* l1,l2,l3:T List. l1 l2  l1 l2 @ l3 | [iseg_append] |
Thm* l1,l2,l3:T List. l1 l2  l2 l3  l1 l3 | [iseg_transitivity] |
Thm* a,b:T, l1,l2:T List. [a / l1] [b / l2]  a = b & l1 l2 | [cons_iseg] |
Thm* f:(T1 T2), Q:(T2  ), L:T1 List.
Thm* filter(Q;map(f;L)) = map(f;filter(Q o f;L)) | [filter_map] |
Thm* P:(T  ), l:T List. filter(P;l) {x:T| P(x) } List | [filter_type] |
Thm* P1,P2:(T  ), L:T List.
Thm* filter(P1;filter(P2;L)) ~ filter( t.(P1(t)) (P2(t));L) | [filter_filter] |
Thm* P:(T  ), l1,l2:T List. filter(P;l1 @ l2) ~ (filter(P;l1) @ filter(P;l2)) | [filter_append] |
Thm* L:A List, f1,f2:(A  ). f1 = f2  (filter(f1;L) ~ filter(f2;L)) | [filter_functionality] |
Thm* P:(T  ), L:T List, x:T. (x filter(P;L))  (x L) & P(x) | [member_filter] |
Thm* A,B:Type, f:(A B), l:A List . map(f;l) B List | [map_wf_listp] |
Thm* l:A List . ||l|| 1 | [listp_properties] |
Thm* l:T List, a,x,y:T.
Thm* x before y [a / l]  x = a & (y l) x before y l | [cons_before] |
Thm* L:T List, a,b:T. a before b L  (a L) | [l_before_member2] |
Thm* x,y:T. x before y nil  False | [nil_before] |
Thm* L:T List, a,b:T. a before b L  (b L) | [l_before_member] |
Thm* x,y:T, L:T List.
Thm* (x L)  (y L)  x = y x before y L y before x L | [l_tricotomy] |
Thm* x:T, L:T List. (x L)  [x] L | [member_iff_sublist] |
Thm* L:T List, i,j: ||L||. i<j  [L[i]; L[j]] L | [sublist_pair] |
Thm* L1,L2:T List. null(L2)  L1 tl(L2)  L1 L2 | [sublist_tl] |
Thm* L:T List. L nil  L = nil | [sublist_nil] |
Thm* L1,L2:T List. L1 = L2  L1 L2 | [sublist_weakening] |
Thm* x1,x2:T, L1,L2:T List.
Thm* [x1 / L1] [x2 / L2]  x1 = x2 & L1 L2 [x1 / L1] L2 | [cons_sublist_cons] |
Thm* L:T List. nil L  True | [nil_sublist] |
Thm* L1,L2:T List. L1 L2  L2 L1  L1 = L2 | [sublist_antisymmetry] |
Thm* L1,L2:T List. L1 L2  ||L1|| = ||L2||  L1 = L2 | [proper_sublist_length] |
Thm* x:T, L:T List. [x / L] nil  False | [cons_sublist_nil] |
Thm* L1,L2:T List. L1 L2  ||L1|| ||L2|| | [length_sublist] |
Thm* L1,L2,L3:T List. L1 L2  L2 L3  L1 L3 | [sublist_transitivity] |
Thm* L:T List, x:T. null(L)  last([x / L]) = last(L) | [last_cons] |
Thm* T:Type, L:T List. null(L)  last(L) T | [last_wf] |
Thm* a:T List, x:T', f:(T T'). (x map(f;a))  ( y:T. (y a) & x = f(y)) | [member_map] |
Thm* a,x:T. (x [a])  x = a | [member_singleton] |
Thm* L:T List, i: ||L||. (L[i] L) | [select_member] |
Thm* x:T, l1,l2:T List. (x l1 @ l2)  (x l1) (x l2) | [member_append] |
Thm* x:T, l:T List. ( y:T. Dec(x = y))  Dec((x l)) | [l_member_decidable] |
Thm* l:T List, a,x:T. (x [a / l])  x = a (x l) | [cons_member] |
Thm* L:T List, x:T. (x L)  null(L) | [member_null] |
Thm* L:T List, x:T. null(L)  (x L) | [null_member] |
Thm* x:T. (x nil)  False | [nil_member] |
Thm* as:T List, x:T. 0<||as||  (x tl(as))  (x as) | [member_tl] |
Thm* a:T List, f:(T T). ( x:T. (x a)  f(x) = x)  map(f;a) = a | [trivial_map] |
Thm* a:T List, f,g:(T T').
Thm* ( x:T. (x a)  f(x) = g(x))  map(f;a) = map(g;a) | [map_equal2] |
Thm* L:T List. L = nil  ( x:T. (x L)) | [member_exists] |
Thm* n: , f:( n T), i: n. mklist(n;f)[i] = f(i) | [mklist_select] |
Thm* n: , f:( n T). ||mklist(n;f)|| = n  | [mklist_length] |
Thm* l:T List. (l @ nil) ~ l | [append_nil_sq] |
Thm* l1,l2:T List. (l1 @ l2) = nil  l1 = nil & l2 = nil | [append_is_nil] |
Thm* z:T List. ||z|| = 2  z = [z[0]; z[1]] | [list_2_decomp] |
Thm* f:(A B), as:A List. ||map(f;as)|| = ||as||  | [map_length_nat] |
Thm* a,a':T, b,b':T List. [a / b] = [a' / b']  a = a' & b = b' | [cons_one_one] |
Thm* Q:((T List) Prop).
Thm* Q(nil)  ( ys:T List, x:T. Q(ys)  Q(ys @ [x]))  ( zs:T List. Q(zs)) | [list_append_singleton_ind] |
Thm* L:T List. 0<||L||  ( x:T, L':T List. L = (L' @ [x])) | [list_decomp_reverse] |
Thm* a:T List, f,g:(T T').
Thm* ( i: . i<||a||  f(a[i]) = g(a[i]))  map(f;a) = map(g;a) | [map_equal] |
Thm* a,b:T List. ||a|| = ||b||  ( i: . i<||a||  a[i] = b[i])  a = b | [list_extensionality] |
Thm* f,as':Top, A:Type, as:A List. map(f;as @ as') ~ (map(f;as) @ map(f;as')) | [map_append_sq] |
Thm* m: , L:T List. m<||L||  (nth_tl(m;L) ~ [L[m] / nth_tl(1+m;L)]) | [nth_tl_decomp] |
Thm* L:T List. 0<||L||  (L ~ [hd(L) / tl(L)]) | [list_decomp] |
Thm* l:T List. ||l|| = 0  l = nil | [length_zero] |
Thm* L:T List. L = nil  0<||L|| | [non_nil_length] |
Thm* L:T List, P:( ||L|| Prop).
Thm* ( x: ||L||. Dec(P(x)))
Thm* 
Thm* ( i,j: ||L||. P(i)  i<j  P(j))
Thm* 
Thm* ( L_1,L_2:T List. L = (L_1 @ L_2) & ( i: ||L||. P(i)  ||L_1|| i)) | [append_split2] |
Thm* L:T List, n:{0...||L||}. (firstn(n;L) @ nth_tl(n;L)) = L | [append_firstn_lastn] |
Def no_repeats(T;l) == i,j: . i<||l||  j<||l||  i = j  l[i] = l[j] T | [no_repeats] |
Def L1 L2
Def == f:( ||L1||  ||L2||).
Def == increasing(f;||L1||) & ( j: ||L1||. L1[j] = L2[(f(j))] T) | [sublist] |