At: mn 23 lem12213212 1. Alph: Type 2. R: Alph*Alph*Prop 3. Fin(Alph) 4. EquivRel x,y:Alph*. x R y 5. Fin(x,y:Alph*//(x R y)) 6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y)) 7. g: (x,y:Alph*//(x R y)) 8. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))) 9. a:Alph, x:x,y:Alph*//(x R y). a.x x,y:Alph*//(x R y) 10. fL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 11. t:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
(x.x/x1,x2.(g(x1)) = (g(x2)))(t) mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));t;fL) 12. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph) 13. TBL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 14. s:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));s;TBL)
(w:Alph*.
mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y))
,a,xy. xy/x,y. < a.x,a.y > > :ws);fL)) 15. x: x,y:Alph*//(x R y) 16. y: x,y:Alph*//(x R y) 17. w:Alph*, s:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))).
( < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > :ws) = (s/x,y. < w@x,w@y > )
Dec(x Rg y) By: RWH (HypC -1) 14
THEN
Thin -1
THEN
InstHyp [ < x,y > ] 14
THEN
Thin 14
THEN
Reduce -1 Generated subgoal: