PrintForm Definitions myhill nerode Sections AutomataTheory Doc

At: mn 23 lem 1 2 2 1 3 2 1 2 1

1. Alph: Type
2. R: Alph*Alph*Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))
8. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))
9. a:Alph, x:x,y:Alph*//(x R y). a.x x,y:Alph*//(x R y)
10. fL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*
11. t:((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))). (x.x/x1,x2.(g(x1)) = (g(x2)))(t) mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y));t;fL)
12. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph)
13. TBL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*
14. x: x,y:Alph*//(x R y)
15. y: x,y:Alph*//(x R y)
16. mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)); < x,y > ;TBL) (w:Alph*. mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)); < w@x,w@y > ;fL))

Dec(x Rg y)

By: ((RWH (RevHypC 11) -1) THEN (Thin 11) THEN (Reduce -1)) THENA Reduce 0

Generated subgoal:

111. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph)
12. TBL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))*
13. x: x,y:Alph*//(x R y)
14. y: x,y:Alph*//(x R y)
15. mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)); < x,y > ;TBL) (w:Alph*. (g(w@x)) = (g(w@y)))
Dec(x Rg y)


About:
universefunctionlistpropquotientall
impliesboolproductmemberconsassert
applylambdaspreadpairexists