At: mn 23 lem1221321211 1. Alph: Type 2. R: Alph*Alph*Prop 3. Fin(Alph) 4. EquivRel x,y:Alph*. x R y 5. Fin(x,y:Alph*//(x R y)) 6. x,y,z:Alph*. (x R y) ((z @ x) R (z @ y)) 7. g: (x,y:Alph*//(x R y)) 8. Fin((x,y:Alph*//(x R y))(x,y:Alph*//(x R y))) 9. a:Alph, x:x,y:Alph*//(x R y). a.x x,y:Alph*//(x R y) 10. fL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 11. < (x,y:Alph*//(x R y))(x,y:Alph*//(x R y)),a,xy. xy/x,y. < a.x,a.y > > ActionSet(Alph) 12. TBL: ((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)))* 13. x: x,y:Alph*//(x R y) 14. y: x,y:Alph*//(x R y) 15. mem_f((x,y:Alph*//(x R y))(x,y:Alph*//(x R y)); < x,y > ;TBL) (w:Alph*. (g(w@x)) = (g(w@y)))
Dec(x Rg y) By: Unfold `lquo_rel` 0
THEN
Reduce 0
THEN
Inst
Thm*P:(TProp). (x:T. Dec(P(x))) & Dec(x:T. P(x)) Dec(x:T. P(x))
[Alph*;z.g(z@x) g(z@y)]
THEN
Reduce -1
THEN
Try (Complete Auto) Generated subgoal: