At: mn 23 lem 1 1 1 1 2 1 1 2 2 2 2 1 1 1 1 1 1 1
1. Alph: Type
2. R: Alph*
Alph*
Prop
3. Fin(Alph)
4. EquivRel x,y:Alph*. x R y
5. Fin(x,y:Alph*//(x R y))
6.
x,y,z:Alph*. (x R y) 
((z @ x) R (z @ y))
7. g: (x,y:Alph*//(x R y))


8. x: x,y:Alph*//(x R y)
9. y: x,y:Alph*//(x R y)
10. < (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,p. p/x,y. < a.x,a.y > >
ActionSet(Alph)
11. Fin((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))
12.
x:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))), y:Alph*.
( < (x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)),
a,p. p/x,y. < a.x,a.y > > :y
x) = (x/x1,x2. < y@
x1,y@
x2 > )
13. RL: ((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y)))*
14.
s:((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y))).
(
w:Alph*. ( < x,y > /x1,x2. < w@
x1,w@
x2 > ) = s) 
mem_f((x,y:Alph*//(x R y))
(x,y:Alph*//(x R y));s;RL)
15. x@0: Alph*
16. (g(x@0@
x)) =
(g(x@0@
y)) = false
w:Alph*. ( < x,y > /x1,x2. < w@
x1,w@
x2 > ) = < x@0@
x,x@0@
y >
By:
InstConcl [x@0]
THEN
Reduce 0
Generated subgoals:None
About: