At: nd ext valcom 1 1 2 1 1 1 1 1 1 1 2 1 2 1
1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (St
Alph*)*
5. ||C|| > 0
6.
i:
(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C)
q
11.
NDA(q,a,p)
12. i: 
13. 0
i
14. i < ||map(
c. < 1of(c),a.2of(c) > ;C)||+1-1
15.
i = ||C||-1
||2of(map(
c. < 1of(c),a.2of(c) > ;C)[i])||
1
By:
RWH
(LemmaC
Thm*
f:(A
B), as:A*, n:
||as||. map(f;as)[n] = f(as[n]))
0
THEN
Reduce 0
Generated subgoal:| 1 | ||2of(C[i])||+1 1 |
About: