PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 2 1 1 1

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i < ||C||-1

2of((c. < 1of(c),a.2of(c) > )(C[(i+1)])) = rev(tl(rev(2of((c. < 1of(c),a.2of(c) > )(C[i]))))) Alph*

By: Reduce 0

Generated subgoal:

1 a.2of(C[(i+1)]) = rev(tl((rev(2of(C[i])) @ [a])))


About:
equallistapplylambdapairconsaddnatural_number
universeproductallsubtractintless_thannil