PrintForm Definitions nfa 1 Sections AutomataTheory Doc

At: nd ext valcom 1 1 2 1 1 1 1 1 1 2 2

1. Alph: Type
2. St: Type
3. NDA: NDA(Alph;St)
4. C: (StAlph*)*
5. ||C|| > 0
6. i:(||C||-1). ||2of(C[i])|| > 0
7. q: St
8. a: Alph
9. p: St
10. NDA(C) q
11. NDA(q,a,p)
12. i:
13. 0i
14. i < ||map(c. < 1of(c),a.2of(c) > ;C)||+1-1
15. i < ||C||-1

2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[(i+1)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))))

By: RW (NthC 1 (LemmaC Thm* as,bs:T*, i:{||as||..(||as||+||bs||)}. (as @ bs)[i] = bs[(i-||as||)])) 0 THENA (Auto THEN Reduce 0 THEN RemoveLabel)

Generated subgoal:

1 2of([ < p,nil > ][(i+1-||map(c. < 1of(c),a.2of(c) > ;C)||)]) = rev(tl(rev(2of((map(c. < 1of(c),a.2of(c) > ;C) @ [ < p,nil > ])[i]))))


About:
equallistaddnatural_numberlambdapairconsnil
universeallsubtractproductapplyintless_than