Nuprl Lemma : sq_stable__monot
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀f:T ⟶ T. ((∀x,y:T.  SqStable(R[x;y])) ⇒ SqStable(monot(T;x,y.R[x;y];f)))
Proof
Definitions occuring in Statement : 
monot: monot(T;x,y.R[x; y];f), 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
monot: monot(T;x,y.R[x; y];f), 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
so_apply: x[s], 
subtype_rel: A ⊆r B
Lemmas referenced : 
sq_stable__all, 
all_wf, 
sq_stable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
universeEquality, 
dependent_functionElimination, 
cumulativity
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x,y:T.    SqStable(R[x;y]))  {}\mRightarrow{}  SqStable(monot(T;x,y.R[x;y];f)))
Date html generated:
2016_05_15-PM-00_03_01
Last ObjectModification:
2015_12_26-PM-11_25_17
Theory : gen_algebra_1
Home
Index