Nuprl Lemma : sq_stable__monot
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀f:T ⟶ T. ((∀x,y:T. SqStable(R[x;y]))
⇒ SqStable(monot(T;x,y.R[x;y];f)))
Proof
Definitions occuring in Statement :
monot: monot(T;x,y.R[x; y];f)
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
monot: monot(T;x,y.R[x; y];f)
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s1;s2]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
Lemmas referenced :
sq_stable__all,
all_wf,
sq_stable_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
sqequalRule,
lambdaEquality,
functionEquality,
applyEquality,
hypothesis,
independent_functionElimination,
because_Cache,
universeEquality,
dependent_functionElimination,
cumulativity
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}].
\mforall{}f:T {}\mrightarrow{} T. ((\mforall{}x,y:T. SqStable(R[x;y])) {}\mRightarrow{} SqStable(monot(T;x,y.R[x;y];f)))
Date html generated:
2016_05_15-PM-00_03_01
Last ObjectModification:
2015_12_26-PM-11_25_17
Theory : gen_algebra_1
Home
Index