Nuprl Lemma : usym_shift
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
  ∀f:A ⟶ B
    ((∀[x,y:A].  R[x;y] supposing R[x;y])
    
⇒ RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)
    
⇒ UniformlySym(B;x,y.S[x;y])
    
⇒ UniformlySym(A;x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
usym: UniformlySym(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
usym: UniformlySym(T;x,y.E[x; y])
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
squash: ↓T
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
usym_wf, 
rels_iso_wf, 
uall_wf, 
isect_wf, 
subtype_rel_self, 
uimplies-iff-squash-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
instantiate, 
universeEquality, 
because_Cache, 
functionEquality, 
cumulativity, 
productElimination, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  B
        ((\mforall{}[x,y:A].    R[x;y]  supposing  R[x;y])
        {}\mRightarrow{}  RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)
        {}\mRightarrow{}  UniformlySym(B;x,y.S[x;y])
        {}\mRightarrow{}  UniformlySym(A;x,y.R[x;y]))
Date html generated:
2019_10_15-AM-10_32_24
Last ObjectModification:
2018_08_25-PM-05_13_09
Theory : gen_algebra_1
Home
Index