Nuprl Lemma : xxconnex_iff_trichot_a

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (connex(T;Ro⇐⇒ ∀a,b:T.  ((R b) ∨ (a b ∈ T) ∨ (R a)))


Proof




Definitions occuring in Statement :  refl_cl: Eo xxconnex: connex(T;R) uall: [x:A]. B[x] prop: all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  refl_cl: Eo xxconnex: connex(T;R) uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] connex: Connex(T;x,y.R[x; y]) member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q guard: {T}
Lemmas referenced :  connex_wf or_wf equal_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation independent_pairFormation lambdaFormation sqequalHypSubstitution hypothesisEquality cut lemma_by_obid isectElimination thin lambdaEquality hypothesis applyEquality functionEquality cumulativity universeEquality dependent_functionElimination unionElimination inrFormation inlFormation equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (connex(T;R\msupzero{})  \mLeftarrow{}{}\mRightarrow{}  \mforall{}a,b:T.    ((R  a  b)  \mvee{}  (a  =  b)  \mvee{}  (R  b  a)))



Date html generated: 2016_05_15-PM-00_01_54
Last ObjectModification: 2015_12_26-PM-11_25_52

Theory : gen_algebra_1


Home Index