Nuprl Lemma : abgrp_properties

[g:AbGrp]. Comm(|g|;*)


Proof




Definitions occuring in Statement :  abgrp: AbGrp grp_op: * grp_car: |g| comm: Comm(T;op) uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T abgrp: AbGrp grp: Group{i} mon: Mon sq_stable: SqStable(P) implies:  Q squash: T comm: Comm(T;op)
Lemmas referenced :  abgrp_wf grp_op_wf grp_car_wf sq_stable__comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[g:AbGrp].  Comm(|g|;*)



Date html generated: 2016_05_15-PM-00_09_39
Last ObjectModification: 2016_01_15-PM-11_06_10

Theory : groups_1


Home Index