Nuprl Lemma : abmonoid_cumulative

AbMon ⊆AbMon{[i j]}


Proof




Definitions occuring in Statement :  abmonoid: AbMon subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T abmonoid: AbMon mon: Mon uall: [x:A]. B[x] prop:
Lemmas referenced :  subtype_rel_grp monoid_p_wf grp_car_wf grp_op_wf grp_id_wf mon_wf comm_wf abmonoid_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality cut hypothesisEquality applyEquality lemma_by_obid hypothesis sqequalRule instantiate isectElimination

Latex:
AbMon  \msubseteq{}r  AbMon\{[i  |  j]\}



Date html generated: 2016_05_15-PM-00_07_33
Last ObjectModification: 2015_12_26-PM-11_46_39

Theory : groups_1


Home Index