Nuprl Lemma : abmonoid_inc
AbMon ⊆r AbMon{[i | j]}
Proof
Definitions occuring in Statement :
abmonoid: AbMon
,
subtype_rel: A ⊆r B
Definitions unfolded in proof :
subtype_rel: A ⊆r B
,
member: t ∈ T
,
abmonoid: AbMon
,
mon: Mon
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
Lemmas referenced :
subtype_rel_grp,
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
mon_wf,
comm_wf,
abmonoid_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaEquality,
sqequalHypSubstitution,
setElimination,
thin,
rename,
dependent_set_memberEquality,
cut,
hypothesisEquality,
applyEquality,
introduction,
extract_by_obid,
hypothesis,
sqequalRule,
instantiate,
isectElimination,
because_Cache
Latex:
AbMon \msubseteq{}r AbMon\{[i | j]\}
Date html generated:
2019_10_15-AM-10_32_36
Last ObjectModification:
2018_09_17-PM-06_25_24
Theory : groups_1
Home
Index