Nuprl Lemma : grp_leq_iff_lt_or_eq

g:OMon. ∀a,b:|g|.  (a ≤ ⇐⇒ (a < b) ∨ (a b ∈ |g|))


Proof




Definitions occuring in Statement :  grp_lt: a < b grp_leq: a ≤ b omon: OMon grp_car: |g| all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B loset: LOSet oset_of_ocmon: g↓oset dset_of_mon: g↓set set_car: |p| pi1: fst(t) set_leq: a ≤ b set_le: b pi2: snd(t) grp_leq: a ≤ b grp_lt: a < b
Lemmas referenced :  set_leq_iff_lt_or_eq oset_of_ocmon_wf loset_wf omon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule

Latex:
\mforall{}g:OMon.  \mforall{}a,b:|g|.    (a  \mleq{}  b  \mLeftarrow{}{}\mRightarrow{}  (a  <  b)  \mvee{}  (a  =  b))



Date html generated: 2016_05_15-PM-00_11_57
Last ObjectModification: 2015_12_26-PM-11_43_18

Theory : groups_1


Home Index