Nuprl Lemma : set_leq_iff_lt_or_eq

s:POSet{i}. ∀a,b:|s|.  (a ≤ ⇐⇒ (a <b) ∨ (a b ∈ |s|))


Proof




Definitions occuring in Statement :  poset: POSet{i} set_lt: a <b set_leq: a ≤ b set_car: |p| all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] poset: POSet{i} qoset: QOSet dset: DSet ab_binrel: x,y:T. E[x; y] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop: iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q set_lt: a <b set_blt: a <b b infix_ap: y cand: c∧ B not: ¬A guard: {T} uimplies: supposing a false: False uiff: uiff(P;Q)
Lemmas referenced :  set_car_wf poset_wf poset_properties qoset_wf uanti_sym_wf set_leq_wf qoset_properties dset_wf upreorder_wf dset_properties poset_sig_wf eqfun_p_wf set_eq_wf or_wf set_lt_wf equal_wf decidable__dset_eq assert_wf band_wf set_le_wf bnot_wf and_wf not_wf set_leq_antisymmetry iff_transitivity iff_weakening_uiff assert_of_band assert_of_set_leq assert_of_bnot set_leq_weakening_lt set_leq_weakening_eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule applyEquality lambdaEquality setEquality cumulativity equalityTransitivity equalitySymmetry independent_pairFormation dependent_functionElimination unionElimination inrFormation inlFormation because_Cache independent_functionElimination independent_isectElimination voidElimination productElimination impliesFunctionality

Latex:
\mforall{}s:POSet\{i\}.  \mforall{}a,b:|s|.    (a  \mleq{}  b  \mLeftarrow{}{}\mRightarrow{}  (a  <s  b)  \mvee{}  (a  =  b))



Date html generated: 2016_05_15-PM-00_05_12
Last ObjectModification: 2015_12_26-PM-11_28_28

Theory : sets_1


Home Index