Nuprl Lemma : imon_all_properties

[g:IMonoid]. (Assoc(|g|;*) ∧ Ident(|g|;*;e))


Proof




Definitions occuring in Statement :  imon: IMonoid grp_id: e grp_op: * grp_car: |g| ident: Ident(T;op;id) assoc: Assoc(T;op) uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid and: P ∧ Q assoc: Assoc(T;op) ident: Ident(T;op;id) monoid_p: IsMonoid(T;op;id) cand: c∧ B
Lemmas referenced :  imon_properties grp_car_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality independent_pairFormation

Latex:
\mforall{}[g:IMonoid].  (Assoc(|g|;*)  \mwedge{}  Ident(|g|;*;e))



Date html generated: 2016_05_15-PM-00_06_40
Last ObjectModification: 2015_12_26-PM-11_47_16

Theory : groups_1


Home Index