Nuprl Lemma : mon_nat_op_wf
∀[g:IMonoid]. ∀[n:ℕ]. ∀[e:|g|].  (n ⋅ e ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
imon: IMonoid
, 
grp_car: |g|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
mon_nat_op: n ⋅ e
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
Lemmas referenced : 
nat_op_wf, 
grp_car_wf, 
nat_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:\mBbbN{}].  \mforall{}[e:|g|].    (n  \mcdot{}  e  \mmember{}  |g|)
Date html generated:
2016_05_15-PM-00_16_26
Last ObjectModification:
2015_12_26-PM-11_39_43
Theory : groups_1
Home
Index