Nuprl Lemma : mon_when_swap

[g:Mon]. ∀[b,b':𝔹]. ∀[p:|g|].  ((when b. when b'. p) (when b'. when b. p) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_when: when b. p mon: Mon grp_car: |g| bool: 𝔹 uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mon_when: when b. p bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff mon: Mon
Lemmas referenced :  grp_id_wf grp_car_wf bool_wf mon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule hypothesisEquality lemma_by_obid isectElimination setElimination rename hypothesis because_Cache isect_memberEquality axiomEquality

Latex:
\mforall{}[g:Mon].  \mforall{}[b,b':\mBbbB{}].  \mforall{}[p:|g|].    ((when  b.  when  b'.  p)  =  (when  b'.  when  b.  p))



Date html generated: 2016_05_15-PM-00_18_54
Last ObjectModification: 2015_12_26-PM-11_38_09

Theory : groups_1


Home Index