Nuprl Lemma : mon_when_swap
∀[g:Mon]. ∀[b,b':𝔹]. ∀[p:|g|].  ((when b. when b'. p) = (when b'. when b. p) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_when: when b. p
, 
mon: Mon
, 
grp_car: |g|
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mon_when: when b. p
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
mon: Mon
Lemmas referenced : 
grp_id_wf, 
grp_car_wf, 
bool_wf, 
mon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
equalityElimination, 
sqequalRule, 
hypothesisEquality, 
lemma_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
because_Cache, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:Mon].  \mforall{}[b,b':\mBbbB{}].  \mforall{}[p:|g|].    ((when  b.  when  b'.  p)  =  (when  b'.  when  b.  p))
Date html generated:
2016_05_15-PM-00_18_54
Last ObjectModification:
2015_12_26-PM-11_38_09
Theory : groups_1
Home
Index