Nuprl Lemma : bpa-minus_wf
∀[p:ℕ+]. ∀[x:basic-padic(p)].  (bpa-minus(p;x) ∈ basic-padic(p))
Proof
Definitions occuring in Statement : 
bpa-minus: bpa-minus(p;x)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bpa-minus: bpa-minus(p;x)
, 
basic-padic: basic-padic(p)
, 
nat_plus: ℕ+
Lemmas referenced : 
p-minus_wf, 
basic-padic_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
hypothesisEquality, 
extract_by_obid, 
isectElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:basic-padic(p)].    (bpa-minus(p;x)  \mmember{}  basic-padic(p))
Date html generated:
2018_05_21-PM-03_24_29
Last ObjectModification:
2018_05_19-AM-08_22_02
Theory : rings_1
Home
Index