Nuprl Lemma : bpa-minus_wf

[p:ℕ+]. ∀[x:basic-padic(p)].  (bpa-minus(p;x) ∈ basic-padic(p))


Proof




Definitions occuring in Statement :  bpa-minus: bpa-minus(p;x) basic-padic: basic-padic(p) nat_plus: + uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bpa-minus: bpa-minus(p;x) basic-padic: basic-padic(p) nat_plus: +
Lemmas referenced :  p-minus_wf basic-padic_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule spreadEquality sqequalHypSubstitution productElimination thin independent_pairEquality hypothesisEquality extract_by_obid isectElimination hypothesis axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality because_Cache

Latex:
\mforall{}[p:\mBbbN{}\msupplus{}].  \mforall{}[x:basic-padic(p)].    (bpa-minus(p;x)  \mmember{}  basic-padic(p))



Date html generated: 2018_05_21-PM-03_24_29
Last ObjectModification: 2018_05_19-AM-08_22_02

Theory : rings_1


Home Index