Nuprl Lemma : decidable__rng_eq
∀r:DRng. ∀u,v:|r|.  Dec(u = v ∈ |r|)
Proof
Definitions occuring in Statement : 
drng: DRng
, 
rng_car: |r|
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
drng: DRng
, 
and: P ∧ Q
, 
eqfun_p: IsEqFun(T;eq)
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
rng_car_wf, 
drng_wf, 
drng_properties, 
decidable_functionality, 
equal_wf, 
assert_wf, 
rng_eq_wf, 
iff_weakening_uiff, 
decidable__assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
productElimination, 
applyEquality, 
independent_functionElimination, 
because_Cache, 
independent_pairFormation, 
dependent_functionElimination
Latex:
\mforall{}r:DRng.  \mforall{}u,v:|r|.    Dec(u  =  v)
Date html generated:
2016_05_15-PM-00_20_40
Last ObjectModification:
2015_12_27-AM-00_02_48
Theory : rings_1
Home
Index