Nuprl Lemma : decidable__rng_eq

r:DRng. ∀u,v:|r|.  Dec(u v ∈ |r|)


Proof




Definitions occuring in Statement :  drng: DRng rng_car: |r| decidable: Dec(P) all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] drng: DRng and: P ∧ Q eqfun_p: IsEqFun(T;eq) infix_ap: y implies:  Q uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  rng_car_wf drng_wf drng_properties decidable_functionality equal_wf assert_wf rng_eq_wf iff_weakening_uiff decidable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis productElimination applyEquality independent_functionElimination because_Cache independent_pairFormation dependent_functionElimination

Latex:
\mforall{}r:DRng.  \mforall{}u,v:|r|.    Dec(u  =  v)



Date html generated: 2016_05_15-PM-00_20_40
Last ObjectModification: 2015_12_27-AM-00_02_48

Theory : rings_1


Home Index