Nuprl Lemma : drng_all_properties

[r:DRng]
  (Assoc(|r|;+r)
  ∧ Ident(|r|;+r;0)
  ∧ Inverse(|r|;+r;0;-r)
  ∧ Assoc(|r|;*)
  ∧ Ident(|r|;*;1)
  ∧ BiLinear(|r|;+r;*)
  ∧ IsEqFun(|r|;=b))


Proof




Definitions occuring in Statement :  drng: DRng rng_one: 1 rng_times: * rng_minus: -r rng_zero: 0 rng_plus: +r rng_eq: =b rng_car: |r| bilinear: BiLinear(T;pl;tm) ident: Ident(T;op;id) eqfun_p: IsEqFun(T;eq) inverse: Inverse(T;op;id;inv) assoc: Assoc(T;op) uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T drng: DRng and: P ∧ Q assoc: Assoc(T;op) ident: Ident(T;op;id) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) uimplies: supposing a prop: infix_ap: y implies:  Q ring_p: IsRing(T;plus;zero;neg;times;one) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) cand: c∧ B
Lemmas referenced :  drng_properties rng_car_wf assert_wf rng_eq_wf assert_witness equal_wf drng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality applyEquality equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation

Latex:
\mforall{}[r:DRng]
    (Assoc(|r|;+r)
    \mwedge{}  Ident(|r|;+r;0)
    \mwedge{}  Inverse(|r|;+r;0;-r)
    \mwedge{}  Assoc(|r|;*)
    \mwedge{}  Ident(|r|;*;1)
    \mwedge{}  BiLinear(|r|;+r;*)
    \mwedge{}  IsEqFun(|r|;=\msubb{}))



Date html generated: 2016_05_15-PM-00_20_36
Last ObjectModification: 2015_12_27-AM-00_02_50

Theory : rings_1


Home Index