Nuprl Lemma : drng_all_properties
∀[r:DRng]
  (Assoc(|r|;+r)
  ∧ Ident(|r|;+r;0)
  ∧ Inverse(|r|;+r;0;-r)
  ∧ Assoc(|r|;*)
  ∧ Ident(|r|;*;1)
  ∧ BiLinear(|r|;+r;*)
  ∧ IsEqFun(|r|;=b))
Proof
Definitions occuring in Statement : 
drng: DRng
, 
rng_one: 1
, 
rng_times: *
, 
rng_minus: -r
, 
rng_zero: 0
, 
rng_plus: +r
, 
rng_eq: =b
, 
rng_car: |r|
, 
bilinear: BiLinear(T;pl;tm)
, 
ident: Ident(T;op;id)
, 
eqfun_p: IsEqFun(T;eq)
, 
inverse: Inverse(T;op;id;inv)
, 
assoc: Assoc(T;op)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
drng: DRng
, 
and: P ∧ Q
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
inverse: Inverse(T;op;id;inv)
, 
bilinear: BiLinear(T;pl;tm)
, 
eqfun_p: IsEqFun(T;eq)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
, 
implies: P 
⇒ Q
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
monoid_p: IsMonoid(T;op;id)
, 
group_p: IsGroup(T;op;id;inv)
, 
cand: A c∧ B
Lemmas referenced : 
drng_properties, 
rng_car_wf, 
assert_wf, 
rng_eq_wf, 
assert_witness, 
equal_wf, 
drng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation
Latex:
\mforall{}[r:DRng]
    (Assoc(|r|;+r)
    \mwedge{}  Ident(|r|;+r;0)
    \mwedge{}  Inverse(|r|;+r;0;-r)
    \mwedge{}  Assoc(|r|;*)
    \mwedge{}  Ident(|r|;*;1)
    \mwedge{}  BiLinear(|r|;+r;*)
    \mwedge{}  IsEqFun(|r|;=\msubb{}))
Date html generated:
2016_05_15-PM-00_20_36
Last ObjectModification:
2015_12_27-AM-00_02_50
Theory : rings_1
Home
Index