Nuprl Lemma : drng_subtype_rng

DRng ⊆Rng


Proof




Definitions occuring in Statement :  drng: DRng rng: Rng subtype_rel: A ⊆B
Definitions unfolded in proof :  drng: DRng rng: Rng uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q cand: c∧ B
Lemmas referenced :  subtype_rel_sets rng_sig_wf and_wf ring_p_wf rng_car_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf eqfun_p_wf rng_eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalTransitivity computationStep sqequalReflexivity cut instantiate lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis because_Cache lambdaEquality cumulativity hypothesisEquality independent_isectElimination setElimination rename setEquality lambdaFormation productElimination

Latex:
DRng  \msubseteq{}r  Rng



Date html generated: 2016_05_15-PM-00_20_29
Last ObjectModification: 2015_12_27-AM-00_02_53

Theory : rings_1


Home Index