Nuprl Lemma : drng_subtype_rng
DRng ⊆r Rng
Proof
Definitions occuring in Statement : 
drng: DRng
, 
rng: Rng
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
drng: DRng
, 
rng: Rng
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
Lemmas referenced : 
subtype_rel_sets, 
rng_sig_wf, 
and_wf, 
ring_p_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
eqfun_p_wf, 
rng_eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
because_Cache, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination
Latex:
DRng  \msubseteq{}r  Rng
Date html generated:
2016_05_15-PM-00_20_29
Last ObjectModification:
2015_12_27-AM-00_02_53
Theory : rings_1
Home
Index