Nuprl Lemma : field_p_wf

[r:RngSig]. (IsField(r) ∈ ℙ)


Proof




Definitions occuring in Statement :  field_p: IsField(r) rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  field_p: IsField(r) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf nequal_wf rng_car_wf rng_zero_wf rng_one_wf all_wf ring_divs_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:RngSig].  (IsField(r)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_22_29
Last ObjectModification: 2015_12_27-AM-00_01_16

Theory : rings_1


Home Index