Nuprl Lemma : field_p_wf
∀[r:RngSig]. (IsField(r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
field_p: IsField(r)
, 
rng_sig: RngSig
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
field_p: IsField(r)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
nequal_wf, 
rng_car_wf, 
rng_zero_wf, 
rng_one_wf, 
all_wf, 
ring_divs_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:RngSig].  (IsField(r)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_22_29
Last ObjectModification:
2015_12_27-AM-00_01_16
Theory : rings_1
Home
Index